Simulation of Mean Free Path of Solar Energetic Particles in Three-dimensional MHD Background
-
摘要: 太阳高能粒子(SEP)的平均自由程是研究SEP传播的重要参数,由SEP的物理性质和太阳风物理性质决定.使用MHD-SEP模型对三维MHD背景场下的平均自由程进行了探讨,利用该模型具有可提供接近物理真实的太阳风背景场的优势,对SEP的平均自由程进行了定性分析.分别对太阳活动高年和低年选取2个卡林顿周进行模拟,定性分析其空间变化,并研究平均自由程与径向太阳风速度的相关性.结果表明:该方法得到的平均自由程空间分布与以往研究得到的关于平均自由程的结论相吻合,可以用来定性确立平行平均自由程;该模型可以反映不同事件中平行平均自由程分布的不同特征;表现了平均自由程与径向太阳风速度有很好的负相关关系.结果可为未来缓变SEP平均自由程研究作参考.Abstract: The mean free path of SEP is an important parameter in the study of SEP propagation in space physics, which is determined by the physical properties of SEP and solar wind. In this paper, the MHD-SEP model is used to discuss the mean free path under the three-dimensional MHD background field. The advantage of this model is that it has the solar wind background field tending to the real physical model. Two CRs were selected to simulate the high and low years of solar activity, and the spatial changes were qualitatively analyzed, and the correlation between mean free path and radial solar wind speed was studied. The conclusion of the spatial distribution of the mean free equation obtained by this method can be consistent with that obtained by previous scholars, and can be used to qualitatively establish the parallel mean free equation. The model can reflect the different characteristics of the distribution and value of the parallel mean free path in different events. It shows that the average free path depends on the radial direction and has a good negative correlation with the radial solar wind velocity. This work can be used as a reference for future research on the mean free path of SEP.
-
Key words:
- MHD /
- SEP /
- Mean free path
-
[1] BIEBER JOHN W, MATTHAEUS WILLIAM H, SMITH CHARLES W. Proton and electron mean free paths: the palmer consensus revisited[J]. Astrophys. J., 1994, 420:294-306 [2] PALMER I D. Transport coefficients of low-energy cosmic rays in interplanetary space[J]. Rev. Geophys. Space Phys., 1982, 20:335-351 [3] JOKIPⅡ J R. Cosmic-ray propagation. I. charged particles in a random magnetic field[J]. Astrophys. J., 1966, 146:480 [4] HASSELMANN K, WIBBERENZ G. Scattering of charged particles by random electromagetidc field[J]. Z. Geophys., 1968, 34:353 [5] FISK L A, GOLDSTEIN M L, KLIMAS A J, et al. The Fokker-Planck coefficient for pitch-angle scattering of cosmic rays[J]. Astrophys. J., 1974, 190(2):417-428 [6] KUNSTMANN J E. A new transport mode for energetic charged particles in magnetic fluctuations superposed on a diverging mean field[J]. Astrophys. J., 1979, 229:812-820 [7] LEE M A, VOELK H J. Hydromagnetic waves and cosmic-ray diffusion theory[J]. Astrophys. J., 1975, 198. DOI: 10.1086/153625 [8] JONES F C, BIRMINGHAM T J. KAISER T B. Computer simulation of the velocity diffusion of cosmic rays[J]. Phys. Fluid., 1978, 21:347 [9] SCHLICKEISER R, JAEKEL U, DUNG R. Interplanetary transport of solar cosmic rays and dissipation of Alfvén waves[J]. Astron. Astrophys., 1991, 242:L5-L8 [10] BEECK J, WIBBERENZ G. Pitch angle distribution of solar energetic particles and the local scattering properties of the interplanetary medium[J]. Astrophys. J., 1986, 311:437-450 [11] KENNEL C F, SCARF F L, CORONITI F V, et al. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock[J]. J. Geophys. Res. Space Phys., 1984, 89(A7):5419-5435 [12] DENSKAT K U, BEINROTH H J, NEUBAUER F M. Interplanetary magnetic field power spectra with frequencies from 2.4×10 to the-5th Hz to 470Hz from HELIOS-observations during solar minimum conditions[J]. J. Geophys.: Zeitschrift füur Geophys., 1983, 54(1):60-67 [13] SCHLICKEISER R J. On the interplanetary transport of solar cosmic rays[J]. J. Geophys. Res., 1988, 93:2725 [14] BIEBER J W, MATTHAEUS W H. Cosmic ray pitch angle scattering in dynamical magnetic turbulence[R]//Proceedings of the 22nd International Cosmic Ray Conference. Volume. 3, Contributed Papers, SH Sessions. Dublin The Institute for Advanced Studies. 1991:248 [15] SCHLICKEISER R, ACHATZ U. Cosmic-ray particle transport in weakly turbulent plasmas. Part 1. theory[J]. J. Plasma Phys., 1993, 49(1):63-77 [16] GOLDSTEIN M L. A nonlinear theory of cosmic-ray pitch-angle diffusion in homogeneous magnetostatic turbulence[J]. Astrophys. J., 1976, 204(3):900-919 [17] DRüOGE W. Solar particle transport in a dynamical quasi-linear theory[J]. Astrophys. J., 2003, 589(2):1027-1039 [18] BIEBER JOHN W, MATTHAEUS WILLIAM H, SMITH CHARLES W. Proton and electron mean free paths: the palmer consensus revisited[J]. Astrophys. J., 1994, 420:294-306 [19] HASSELMANN K, WIBBERENZ G Z. Comparison of particle-field interaction theory with proton diffusion coefficients[J]. Astrophys. J., 1970, 162:1049 [20] EARL J A. The diffusive idealization of charged-particle transport in random magnetic fields[J]. Astrophys. J., 1974, 193(1):417-428 [21] HALL D E, STURROCK P A. Diffusion, scattering, and acceleration of particles by stochastic electromagnetic fields[J]. Phys. Fluid., 1967, 10(12):2620-2628 [22] HE Hongqing. Study on Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Field[D]. Beijing: University of Chinese Academy of Sciences [23] HE H Q, QIN G. A simple analytical method to determine saolar energetic particles' mean free path[J]. Astrophys. J., 2011, 730(1):46 [24] HE H Q, WAN W. A direct method to determin the parallel mean free path of solar energetic particles with adiabatic focusing[J]. Astrophys. J., 2012, 747(38):7 [25] HE H Q, WAN W. The dependence of the parallel and perpendicular mean free paths on the rigidity of the solar energetic particles: theoretical model versus observations[J]. Astron. Astrophys., 2013, 557:A57 [26] HE H Q, SCHLICKEISER R. Modification of the parallel scattering mean free path of cosmic rays in the presence of adiabatic focusing[J]. Astrophys. J., 2014, 792(2):85 [27] SHALCHI A, ŠKODA T, TAUTZ R C, et al. Analytical description of nonlinear cosmic ray scattering: isotropic and quasilinear regimes of pitch-angle diffusion[J]. Astron. Astrophys., 2009, 507:589-597 [28] YANG Zicai. Interplanetary Solar Wind Background on the Numerical Simulation of Three-dimensional Magnetohydrodynamic (MHD)[D]. Beijing: National Space Science Center, the Chinese Academy of Sciences [29] WEI Wenwen. Effects of the Solar Wind Background on the Numerical Simulation of the Solar Energetic Particle (SEP) Transportation[D]. Beijing: National Space Science Center, the Chinese Academy of Sciences [30] FENG X, YANG L, XIANG C, et al. Three-dimensional solar wind modeling from the sun to earth by a sip-cese MHD model with a six-component grid[J]. Astrophys. J., 2010, 723(1):300 [31] ZHANG M, QIN G, RASSOUL H. Propagation of solar energetic particles in Three-Dimension interplanetary magnetic fields[J]. Astrophys. J., 2009, 692:109-132 [32] QIN G, ZHANG M, DWYER J R. Effect of adiabatic cooling on the fitted parallel mean free path of solar energetic particles[J]. J. Geophys. Res., 2006, 111(A8):DOI: 10.1029/2005JA011512 [33] QIN G, SHALCHI A. Pitch-Angle diffusion coefficients of charged particles from computer simulations[J]. Astrophys. J., 2009, 707:61-66 [34] MORFILL G, RICHTER A K, SCHOLER M. Average properties of cosmic ray diffusion in solar wind streams[J]. J. Geophys. Res., 1979, 84(A4):1505-1513 -
-
计量
- 文章访问数: 1465
- HTML全文浏览量: 344
- PDF下载量: 99
-
被引次数:
0(来源:Crossref)
0(来源:其他)