Comparative Study of Bow Shock Models
-
摘要: 使用Cluster卫星的弓激波穿越数据,比较了Peredo弓激波模型、Merka弓激波模型、Chao弓激波模型和Lu弓激波模型在极端太阳风条件、偶极倾角较大和平静太阳风条件下的预测精度.结果表明:Peredo模型在极端太阳风条件和平静太阳风条件下的预测误差均较大;Merka模型在极端太阳风条件下的预测误差较大;Chao模型可以较为准确地描述平静太阳风条件下的弓激波位型,但不能准确描述偶极倾角较大时的弓激波位型;Lu模型可以同时准确描述极端太阳风条件和平静太阳风条件下的弓激波位型.Abstract: The Earth's bow shock is created by the interaction of the supersonic solar wind and the magnetospheric obstacle. The bow shock is a very important interface. When the satellites pass through the bow shock, its environment will change significantly. In catastrophic space weather conditions, it will cause great damage to the satellites. Therefore, investigating the shape of the bow shock is of great significance for space weather forecast and the satellite environment monitoring. In the past few decades, many bow shock models have been built to study the relationship between solar wind and bow shock. This paper compares the Peredo model, Merka model, Chao model, and Lu model under both extreme solar wind conditions (including large dipole tilt angle) and quiet solar wind conditions. Results show that during the extreme solar wind conditions and quiet solar wind conditions, the prediction of the Peredo model has a large deviation. Merka model is not accurate during the extreme solar wind conditions. Chao model can accurately describe the bow shock under quiet solar wind conditions but with a large deviation for large dipole tilt angle conditions. Lu model can accurately descry be bow shock under both extreme solar wind conditions and quiet solar wind conditions.
-
Key words:
- Bow shock model /
- Dipole tilt angle /
- Extreme solar wind conditions
-
[1] FU S, ZHAO L L, ZANK G P, et al. An ACE/CRIS-observation-based Galactic Cosmic Rays heavy nuclei spectra model Ⅱ[J]. Sci. China Phys. Mech. Astron., 2020, 63:219511.DOI: 10.1007/s11433-019-9423-3 [2] 161.DOI: 10.1016/0032-0633(79)90135-1 [3] CHAPMAN J F, CAIRNS I H. Three-dimensional modeling of Earth's bow shock: shock shape as a function of Alfvén Mach number[J]. J. Geophys. Res., 2003, 108 (A5):1174.DOI: 10.1029/2002JA009569 [4] CHAPMAN J F, CAIRNS I H, LYON J G, et al. MHD simulations of Earth's bow shock: interplanetary magnetic field orientation effects on shape and position[J]. J. Geophys. Res., 2004, 109:A04215.DOI: 10.1029/2003JA010235 [5] VERIGIN MI, KOTOVA G A, SLAVIN J, et al. Analysis of the 3-D shape of the terrestrial bow shock by Interball/MAGION 4 observations[J]. Adv. Space Res., 2001, 28(6):857-862.DOI: 10.1016/S0273-1177(01)00502-6 [6] WANG M, LU J Y, YUAN H Z, et al. The dipole tilt control of the bow shock location for southward IMF: MHD results[J]. Planet. Space Sci., 2015, 106(2015):99-107.DOI: 10.1016/j.pss.2014.12.002 [7] LU J Y, YUAN H Z, WANG M, et al. Dipole tilt control of bow shock location and flaring angle[J]. Sci. China Earth Sci., 2017, 60(1):198-206.DOI: 10.1007/s11430-015-0268-8 [8] FAIRFIELD D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. J.Geophys. Res., 1971, 76(28):6700-6716 [9] PEREDO M, SLAVIN J A, MAZUR E, et al. Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation[J]. J. Geophys. Res., 1995, 100(A5):7907-7916. DOI: 10.1029/94JA02545 [10] MERKA J, SZABO A, NAROCKT W, et al. A comparison of IMP 8 observed bow shock positions with model predictions[J]. J. Geophys. Res., 2003, 108(A2): 1077.DOI: 10.1029/2002JA009384 [11] SAFRANKOVA J, NEMECEK Z, BORAK M. Bow shock position: observations and models[J]. Interball ISTP Prog., 1999, 537:187-201 [12] MERKA J, SZABO A, NAROCK T W, et al. Three dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation[J]. J. Geophys. Res., 2005, 110:A04202.DOI: 10.1029/2004JA010944 [13] CHAO J K, WU D J, LIN C H, et al. Models for the size and shape of the Earth's magnetopause and bow shock[C]//Space Weather Study Using Multipoint Techniques. Hawaii: COSPAR, 2002:127-134 [14] CAIRNS I H, LYON J G. MHD simulations of Earth's bow shock at low Mach numbers: standoff distances[J]. J. Geophys. Res., 1995, 100(A9):17173-17180.DOI:10.1029/ 95JA00993 [15] NĚMEČEK Z, ŠÁFRANKOVÁ J. The Earth's bow shock and magnetopause position as a result of the solar wind-magnetosphere interaction[J]. J. Atmos. Terr. Phys., 1991, 53:1049 [16] VERIGIN M, KOTOVA G, SZABO A, et al. WIND observations of the terrestrial bow shock: 3-D shape and motion[J]. Earth Planets Space, 2001, 53(10):1001-1009.DOI: 10.1186/BF03351697 [17] DMITRIEV A V, CHAO J K, WU D J. Comparative study of bow shock models using Wind and Geotailobservations[J]. J. Geophys. Res., 2003, 108(A12):1464-1482.DOI: 10.1029/2003JA010027 [18] RUSSELL C T, PETRINEC S M. Comment on "Towards an MHD theory for the standoff distance of Earth's bow shock" by I. H. Cairns and C. L. Grabbe[J]. Geophys. Res. Lett., 1996, 23(3):311-314.DOI: 10.1029/95GL03506 [19] TATRALLYAYM, ERDOS G, NEMETH Z, et al. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbance[J]. Ann. Geophys., 2012, 30:1675-1692 [20] LU J Y, ZHOU Y, MA X, et al. Earth's bow shock: a new three-dimensional asymmetric model with dipole tilt effects[J]. J. Geophys. Res.: Space Phys., 2019, 124.DOI:10.1029/ 2018JA026144 [21] ROMANOV S A, SMIRNOV V N, VAISBERG O L. Interaction of the solar wind with Venusp[J]. Cosmic Res., Engl. Trans., 1978, 16:603 -
-
计量
- 文章访问数: 1210
- HTML全文浏览量: 178
- PDF下载量: 78
-
被引次数:
0(来源:Crossref)
0(来源:其他)