留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个控制超强电离辐射抗性开关基因的研究进展

陆慧智 华跃进

陆慧智, 华跃进. 一个控制超强电离辐射抗性开关基因的研究进展[J]. 空间科学学报, 2021, 41(1): 133-140. doi: 10.11728/cjss2021.01.133
引用本文: 陆慧智, 华跃进. 一个控制超强电离辐射抗性开关基因的研究进展[J]. 空间科学学报, 2021, 41(1): 133-140. doi: 10.11728/cjss2021.01.133
LU Huizhi, HUA Yuejin. Research Progress of a Switch Gene in Response to Extreme Ionizing Radiation[J]. Chinese Journal of Space Science, 2021, 41(1): 133-140. doi: 10.11728/cjss2021.01.133
Citation: LU Huizhi, HUA Yuejin. Research Progress of a Switch Gene in Response to Extreme Ionizing Radiation[J]. Chinese Journal of Space Science, 2021, 41(1): 133-140. doi: 10.11728/cjss2021.01.133

一个控制超强电离辐射抗性开关基因的研究进展

doi: 10.11728/cjss2021.01.133
基金项目: 

国家重点研发计划项目(2017YFA0503900)和国家自然科学基金项目(31670065,31870051)共同资助

详细信息
    作者简介:

    华跃进,E-mail:yjhua@zju.edu.cn

  • 中图分类号: Q691

Research Progress of a Switch Gene in Response to Extreme Ionizing Radiation

  • 摘要: 电离辐射广泛存在于地球和空间,会引起生物体内的DNA损伤,导致机体突变甚至死亡.生物体的DNA损伤响应对于稳定基因组的完整性至关重要.耐辐射奇球菌因其超强的DNA修复能力成为研究DNA损伤修复的模式生物之一.PprI-DdrO系统是近年来发现的一种新型且高效的损伤响应途径,PprI作为响应损伤的重要开关蛋白,通过酶切DdrO调控DNA损伤响应基因的表达.本文从功能、结构、激活机制和潜在应用价值几方面描述了PprI的研究进展.

     

  • [1] RYAN J L. Ionizing radiation:the good, the bad, and the ugly[J]. J. Invest. Dermatol., 2012, 132(3 Pt 2):985-993
    [2] PURCHASE I F. Current knowledge of mechanisms of carcinogenicity:genotoxins versus non-genotoxins[J]. Hum. Exp. Toxicol., 1994, 13(1):17-28
    [3] BOULTON S J, GARTNER A, REBOUL J, et al. Combined functional genomic maps of the C. elegans DNA damage response[J]. Science, 2002, 295(5552):127-131
    [4] GORGOULIS V G, VASSILIOU L V, KARAKAIDOS P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions[J]. Nature, 2005, 434(7035):907-913
    [5] CIMPRICH K A, CORTEZ D. ATR:an essential regulator of genome integrity[J]. Nat. Rev. Mol. Cell Biol., 2008, 9(8):616-627
    [6] BUTALA M, ZGUR-BERTOK D, BUSBY S J W. The bacterial LexA transcriptional repressor[J]. Cell. Mol. Life Sci., 2008, 66(1):82-93
    [7] BUTALA M, KLOSE D, HODNIK V, et al. Interconversion between bound and free conformations of LexA orchestrates the bacterial SOS response[J]. Nucl. Acids Res., 2011, 39(15):6546-6557
    [8] LI L, KUMAR A K, HU Z, et al. Small molecule inhibitors targeting the key proteins in dna damage response for cancer therapy[J]. Curr. Med. Chem., 2020, 27. DOI: 10.2174/0929867327666200224102309
    [9] KAWAGUCHI Y, SHIBUYA M, KINOSHITA I, et al. DNA damage and survival time course of Deinococcal cell pellets during 3 years of exposure to outer space[J]. Front. Microbiol., 2020, 11:2050
    [10] PANITZ C, FROSLER J, WINGENDER J, et al. Tolerances of Deinococcus geothermalis biofilms and planktonic cells exposed to space and simulated martian conditions in low earth orbit for almost two years[J]. Astrobiology, 2019, 19(8):979-994
    [11] OTT E, KAWAGUCHI Y, OZGEN N, et al. Proteomic and metabolomic profiling of Deinococcus radiodurans recovering after exposure to simulated low earth orbit vacuum conditions[J]. Front Microbiol, 2019, 10:909
    [12] OTT E, FUCHS F M, MOELLER R, et al. Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach[J]. Sci. Rep., 2019, 9(1):18462
    [13] COX M M, BATTISTA J R. Deinococcus radiodurans-the consummate survivor[J]. Nat. Rev. Microbiol., 2005, 3(11):882-892
    [14] MAKAROVA K S, OMELCHENKO M V, GAIDAMAKOVA E K, et al. Deinococcus geothermalis:the pool of extreme radiation resistance genes shrinks[J]. PloS One, 2007, 2(9):955
    [15] BLASIUS M, SOMMER S, HUBSCHER U. Deinococcus radiodurans:what belongs to the survival kit[J]. Crit. Rev. Biochem. Mol. Biol., 2008, 43(3):221-238
    [16] SLADE D, RADMAN M. Oxidative stress resistance in Deinococcus radiodurans[J]. Microbiol. Mol. Biol. Rev., 2011, 75(1):133-191
    [17] LIM S, JUNG J H, BLANCHARD L, et al. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species[J]. FEMS Microbiol. Rev., 2019, 43(1):19-52
    [18] QI H Z, WANG W Z, HE J Y, et al. Antioxidative system of Deinococcus radiodurans[J]. Res. Microbiol., 2020, 171(2):45-54
    [19] SHARMA A, GAIDAMAKOVA E K, GRICHENKO O, et al. Across the tree of life, radiation resistance is governed by antioxidant Mn(2+), gauged by paramagnetic resonance[J]. Proceed. Natl. Acad. Sci. Unit. States Amer., 2017, 114(44):9253-9260
    [20] CHEN H, XU G, ZHAO Y, et al. A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans[J]. PloS One, 2008, 3(2):1602
    [21] WANG L, XU G, CHEN H, et al. DrRRA:a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans[J]. Mol. Microbiol., 2008, 67(6):1211-1222
    [22] BAUERMEISTER A, BENTCHIKOU E, MOELLER R, et al. Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation[J]. Arch. Microbiol., 2009, 191(12):913-918
    [23] SELVAM K, DUNCAN J R, TANAKA M, et al. DdrA, DdrD, and PprA:components of UV and mitomycin C resistance in Deinococcus radiodurans R1[J]. PloS One, 2013, 8(7):69007
    [24] WANG Y, XU Q, LU H, et al. Protease activity of PprI facilitates DNA damage response:Mn2+-dependence and substrate sequence-specificity of the proteolytic reaction[J]. PloS One, 2015, 10(3):0122071
    [25] NARUMI I, SATOH K, KIKUCHI M, et al. The LexA protein from Deinococcus radiodurans is not involved in RecA induction following gamma irradiation[J]. J. Bacteriol., 2001, 183(23):6951-6956
    [26] SHENG D, ZHENG Z, TIAN B, et al. LexA analog (dra0074) is a regulatory protein that is irrelevant to recA induction[J]. J. Biochem., 2004, 136(6):787-793
    [27] JOLIVET E, LECOINTE F, COSTE G, et al. Limited concentration of RecA delays DNA double-strand break repair in Deinococcus radiodurans R1[J]. Mol. Microbiol., 2006, 59(1):338-349
    [28] DEVIGNE A, ITHURBIDE S, BOUTHIER DE LA TOUR C, et al. DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium[J]. Mol. Microbiol., 2015, 96(5):1069-1084
    [29] LU H, WANG L, LI S, et al. Structure and DNA damage-dependent derepression mechanism for the XRE family member DG-DdrO[J]. Nucl. Acids Res., 2019, 47(18):9925-9933
    [30] DE GROOT A, SIPONEN M I, MAGERAND R, et al. Crystal structure of the transcriptional repressor DdrO:insight into the metalloprotease/repressor-controlled radiation response in Deinococcus[J]. Nucl. Acids Res., 2019, 47(21):11403-11417
    [31] EARL A M, MOHUNDRO M M, MIAN I S, et al. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression[J]. J. Bacteriol., 2002, 184(22):6216-6224
    [32] HUA Y, NARUMI I, GAO G, et al. PprI:a general switch responsible for extreme radioresistance of Deinococcus radiodurans[J]. Biochem. Biophys. Res. Commun., 2003, 306(2):354-360
    [33] GAO G J, LU H M, HUANG L F, et al. Construction of DNA damage response gene pprI function-deficient and function-complementary mutants in Deinococcus radiodurans[J]. Chin. Sci. Bull., 2005, 50(4):311-316
    [34] VUJICIC-ZAGAR A, DULERMO R, LE GORREC M, et al. Crystal structure of the IrrE protein, a central regulator of DNA damage repair in Deinococcaceae[J]. J. Mol. Biol., 2009, 386(3):704-716
    [35] LU H, GAO G, XU G, et al. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage[J]. Mol. Cell. Proteom., 2009, 8(3):481-494
    [36] LU H, CHEN H, XU G, et al. DNA binding is essential for PprI function in response to radiation damage in Deinococcus radiodurans[J]. DNA Rep., 2012, 11(2):139-145
    [37] KOTA S, CHARAKA V K, RINGGAARD S, et al. PprA contributes to Deinococcus radiodurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with Deinococcal topoisomerases[J]. PloS One, 2014, 9(1):85288
    [38] WANG L Y, YIN L F, XU G Z, et al. Cooperation of PprI and DrRRA in response to extreme ionizing radiation in Deinococcus radiodurans[J]. Chin. Sci. Bull., 2012, 57(1):98-104
    [39] LUDANYI M, BLANCHARD L, DULERMO R, et al. Radiation response in Deinococcus deserti:IrrE is a metalloprotease that cleaves repressor protein DdrO[J]. Mol. Microbiol., 2014, 94(2):434-449
    [40] MARTINEZ S E, WU A Y, GLAVAS N A, et al. The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding[J]. Proceed. Natl. Acad. Sci. Unit. States Amer., 2002, 99(20):13260-13265
    [41] SEVVANA M, VIJAYAN V, ZWECKSTETTER M, et al. A ligand-induced switch in the periplasmic domain of sensor histidine kinase CitA[J]. J. Mol. Biol., 2008, 377(2):512-523
    [42] BLANCHARD L, GUERIN P, ROCHE D, et al. Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria[J]. Microbiology Open, 2017, 6(4).DOI: 10.1002/mbo3.477
    [43] LIU Y, ZHOU J, OMELCHENKO M V, et al. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation[J]. Proceed. Natl. Acad. Sci. Unit. States Amer., 2003, 100(7):4191-4196
    [44] MARET W. Zinc coordination environments in proteins as redox sensors and signal transducers[J]. Antioxid. Redox. Sign., 2006, 8(9-10):1419-1441
    [45] KRONCKE K D, KLOTZ L O. Zinc fingers as biologic redox switches[J]. Antioxid. Redox. Sign., 2009, 11(5):1015-1027
    [46] ARAVIND L, PONTING C P. The GAF domain:an evolutionary link between diverse phototransducing proteins[J]. Trends Biochem. Sci., 1997, 22(12):458-459
    [47] LI M, SUN H, FENG Q, et al. Extracellular dGMP enhances Deinococcus radiodurans tolerance to oxidative stress[J]. PloS One, 2013, 8(1):54420
    [48] KINNER A, WU W, STAUDT C, et al. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin[J]. Nucl. Acids Res., 2008, 36(17):5678-5694
    [49] POSTOW L, GHENOIU C, WOO E M, et al. Ku80 removal from DNA through double strand break-induced ubiquitylation[J]. J. Cell. Biol., 2008, 182(3):467-479
    [50] ZHOU C, DAI J, LU H, et al. Succinylome analysis reveals the involvement of lysine succinylation in the extreme resistance of Deinococcus radiodurans[J]. Proteomics, 2019, 19(20):1900158
    [51] ZHANG C, ZHOU Z, ZHANG W, et al. The Site-Directed A184S mutation in the HTH domain of the global regulator IrrE enhances Deinococcus radiodurans R1 tolerance to UV radiation and MMC shock[J]. J. Microbiol. Biotechnol., 2015, 25(12):2125-2134
    [52] GAO G, TIAN B, LIU L, et al. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli[J]. DNA Rep., 2003, 2(12):1419-1427
    [53] PAN J, WANG J, ZHOU Z, et al. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus[J]. PloS One, 2009, 4(2):4422
    [54] MA R, ZHANG Y, HONG H, et al. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans[J]. Curr. Microbiol., 2011, 62(2):659-664
    [55] DONG X, TIAN B, DAI S, et al. Expression of PprI from Deinococcus radiodurans improves lactic acid production and stress tolerance in Lactococcus lactis[J]. PloS One, 2015, 10(11):0142918
    [56] LUO J, WANG T, LI X, et al. Enhancement of bioelectricity generation via heterologous expression of IrrE in Pseudomonas aeruginosa-inoculated MFCs[J]. Biosens. Bioelectron., 2018, 117:23-31
    [57] HOSSEIN HELALAT S, BIDAJ S, SAMANI S, et al. Producing alcohol and salt stress tolerant strain of Saccharomyces cerevisiae by heterologous expression of pprI gene[J]. Enzyme Microb. Technol., 2019, 124:17-22
    [58] WEN L, YUE L, SHI Y, et al. Deinococcus radiodurans pprI expression enhances the radioresistance of eukaryotes[J]. Oncotarget, 2016, 7(13):15339-15355
    [59] ANDERSON A W, NORDAN H C, CAIN R F, et al. Studies on a radio-resistant Micrococcus.1. Isolation, morphology, cultural characteristics, and resistance to gamma radiation[J]. Food Technol. Chicago, 1956, 10(12):575-578
    [60] LONGTIN R. Deinoccocus radiodurans:getting a better fix on DNA repair[J]. J. Natl. Cancer Instit., 2003, 95(17):1270-1271
  • 加载中
计量
  • 文章访问数:  452
  • HTML全文浏览量:  56
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-06
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回