留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SDO/HMI全日面实时磁图的活动区自动识别

崔延美 刘四清 师立勤

崔延美, 刘四清, 师立勤. 基于SDO/HMI全日面实时磁图的活动区自动识别[J]. 空间科学学报, 2021, 41(3): 402-410. doi: 10.11728/cjss2021.03.402
引用本文: 崔延美, 刘四清, 师立勤. 基于SDO/HMI全日面实时磁图的活动区自动识别[J]. 空间科学学报, 2021, 41(3): 402-410. doi: 10.11728/cjss2021.03.402
CUI Yanmei, LIU Siqing, SHI Liqin. Automatic Recognition of Solar Active Regions Based on Real-time SDO/HMI Full Disk Magnetograms[J]. Chinese Journal of Space Science, 2021, 41(3): 402-410. doi: 10.11728/cjss2021.03.402
Citation: CUI Yanmei, LIU Siqing, SHI Liqin. Automatic Recognition of Solar Active Regions Based on Real-time SDO/HMI Full Disk Magnetograms[J]. Chinese Journal of Space Science, 2021, 41(3): 402-410. doi: 10.11728/cjss2021.03.402

基于SDO/HMI全日面实时磁图的活动区自动识别

doi: 10.11728/cjss2021.03.402
基金项目: 

北京市科技重大专项(Z181100002918004)和国防科技创新特区项目共同资助

详细信息
    作者简介:

    崔延美,E-mail:ymcui@nssc.ac.cn

  • 中图分类号: P353

Automatic Recognition of Solar Active Regions Based on Real-time SDO/HMI Full Disk Magnetograms

  • 摘要: 太阳活动区是太阳活动的主要发生源区,活动区的形态、结构、特征是预报太阳爆发的主要依据.因此,活动区的识别是实现太阳爆发预报的前提.SDO/HMI能够提供连续、高时空精度的全日面光球观测图像.参照文献[1]SOHO/MDI综合磁图中活动区的自动识别方法,利用实时可得的HMI全日面磁图,通过阈值法、数学形态法和区域增长法相结合的方式,开展了活动区的快速自动识别研究.将2010—2018年的自动识别结果与NOAA/SWPC每日发布的活动区结果进行比较发现:通过磁图自动识别的活动区数目与SWPC活动区数目整体变化趋势基本一致,两者的相关系数为0.87;从活动区整体标识的数目上来看,通过磁图自动识别的活动区数目少于SWPC发布的结果.未被自动标识的活动区主要为面积小、磁场弱且磁类型简单的活动区,引发太阳爆发的可能性极小,因此不会对太阳爆发的实际预报产生影响.本文的研究方法和结果能够为太阳活动预报提供实时的活动区数据,加速太阳爆发预报模型的实际应用.

     

  • [1] ZHANG J, WANG Y M, LIU Y. Statistical properties of solar active regions obtained from an automatic detection system and the computational biases[J]. Astrophys. J., 2010, 723:1006-1018
    [2] MCINTOSH P. The classification of sunspot groups[J]. Solar Phys., 1990, 125:251-267
    [3] ATAC T. Statistical relationship between sunspots and major flares[J]. Astrophys. Space Sci., 1987, 129:203-208
    [4] WANG H. Evolution of vector magnetic fields and the August 271990 X-3 flare[J]. Solar Phys., 1992, 140:85-98
    [5] WANG T J, XU A, ZHANG H Q. Evolution of vector magnetic fields and vertical currents and their relationship with solar flares in AR 5747[J]. Solar Phys., 1994, 155:99-122
    [6] WANG J, SHI Z, WANG H, et al. Flares and the magnetic nonpotentiality[J]. Astrophys. J., 1996, 456:861-878
    [7] BAO S D, ZHANG H Q, AI G X, et al. A survey of flares and current helicity in active regions[J]. Astron. Astrophys. Suppl. Ser., 1999, 139(2):311-320
    [8] ZHANG H Q. Electric current and magnetic shear in solar active regions[J]. Astrophys. J., 2001, 557(1):L71-L74
    [9] CUI Y, LI R, ZHANG L, et al. Correlation between solar flare productivity and photospheric magnetic field properties[J]. Solar Phys., 2006, 237(1):45-59
    [10] LEKA K D, BARNES G. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data general approach and sample results[J]. Astrophys. J., 2003, 595:1277-1295
    [11] LEKA K D, BARNES G. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I!I. Discriminant analysis[J]. Astophys.J., 2003, 595:1296-1306
    [12] CUI Yanmei, WANG Haimin, XU Yan, et al. Statistical study of magnetic topology for eruptive and confined solar flares[J]. J. Geophys. Res.: Space Phys., 2018, 123(3):1704-1714
    [13] QAHWAJI R, COLAK T. Automatic short-term solar flare prediction using machine learning and sunspot associations[J]. Solar Phys., 2007, 241:195-211
    [14] NÚÑEZ M, FIDALGO R, BAENA M, et al. The influence of active region information on the prediction of solar flares: an empirical model using data mining[J]. Ann. Geophys., 2005, 23(9):3129-3138
    [15] SONG H, TAN C, JING J, et al. Statistical assessment of photospheric magnetic features in imminent solar flare predictions[J]. Solar Phys., 2008, 254(1):101-125
    [16] YUAN Y, SHIH F Y, JING J, et al. Automated flare forecasting using a statistical learning technique[J]. Res. Astron. Astrophys., 2010, 10(8):785-796
    [17] AHMED O W, QAHWAJI R, COLAK T, et al. Solar flare prediction using advanced feature extraction, machine learning, and feature selection[J]. Solar Phys., 2013, 283(1):157-175
    [18] LI R, HE H, CUI Y M, et al. Support vector machine combined with K-nearest neighbors for solar flare forecast[J]. Chin. J. Astron. Astrophys., 2007, 7(3):441-447
    [19] LI R, WANG H N, HUANG X, et al. Solar flare forecasting using learning vector quantity and unsupervised clustering techniques[J]. Sci. China Phys. Mech. Astron., 2011, 54(8):1546-1552
    [20] WANG H N, CUI Y M, LI R, et al. Solar flare forecasting model supported with artificial neural network techniques[J]. Adv. Space Res., 2007, 42(9):1464-1468
    [21] YU D R, HUANG X, WANG H N, et al. Short-term solar flare prediction using a sequential supervised learning method[J]. Solar Phys., 2009, 255(1):91-105
    [22] HUANG X, YU D, HU Q, et al. Short-term solar flare prediction using predictor teams[J]. Solar Phys., 2010, 263:175-184
    [23] HUANG X, WANG H N. Solar flare prediction using highly stressed longitudinal magnetic field parameters[J]. Res. Astron. Astrophys., 2013, 13:351-358
    [24] ZHARKOVA V V, ABOUDARHAM J, ZHARKOV S, et al. Solar feature catalogues in egso[J]. Solar Phys., 2005, 228:361-375
    [25] CURTO J J, BLANCA M, MARTINEZ E. Automatic sunspots detection on full-disk solar images using mathematical morphology[J]. Solar Phys., 2008, 250(2):411-429
    [26] DJAFER D, IRBAH A, MEFTAH M. Identification of sunspots on full-disk solar images using wavelet analysis[J]. Solar Phys., 2012, 281(2):863-875
    [27] COLAK T, QAHWAJI R. Automated mcintosh-based classification of sunspot groups using MDI images[J]. Solar Phys., 2008, 248(2):277-296
    [28] SCHERRER P H, SCHOU J, BUSH R I, et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO)[J]. Solar Phys., 2012, 275:207-227
    [29] BOBRA M G, COUVIDAT S. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs-Space-Weather HMI active region patches[J]. Solar Phys., 2014, 289:3549-3578
    [30] FLORIOS K, KONTOGIANNIS I, PARK S H, et al. Forecasting solar flares using magnetogram-based predictors and machine learning[J]. Solar Phys., 2018, 293(2):28
    [31] LIU C, DENG N, WANG J T, et al. Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm[J]. Astrophys. J., 2017, 843(2):104
    [32] LIU H, LIU C, WANG J T, et al. Predicting solar flares using a long short-term memory network[J]. Astrophys. J., 2019, 877:121
    [33] NISHIZUKA N, SUGIURA K, KUBO Y, et al. Deep Flare Net (DeFN) model for solar flare prediction[J]. Astrophys. J., 2018, 858(2):113
    [34] HUANG X, WANG H, XU L, et al. Deep learning based solar flare forecasting model. I. results for line-of-sight magnetograms[J]. Astrophys. J., 2018, 856(7):11
    [35] FANG Y H, CUI Y M, AO X Z. Deep learning for automatic recognition of magnetic type in sunspot groups[J]. Adv. Astron., 2019, 123:1-10
    [36] LI L, CUI Y M, LEI L, et al. Automatic detection of sunspots and extraction of sunspot characteristic parameters[J]. Chin. J. Space Sci., 2020, 40(3):315-322(李泠, 崔延美, 雷蕾, 等. 太阳黑子自动识别与特征参量自动提取的研究[J]. 空间科学学报, 2020, 40(3):315-322)
  • 加载中
计量
  • 文章访问数:  425
  • HTML全文浏览量:  32
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2020-04-29
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回