留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SABER的平流层顶温度的时空特征分析

王淼 李正 吕建永

王淼, 李正, 吕建永. 基于SABER的平流层顶温度的时空特征分析[J]. 空间科学学报, 2021, 41(5): 760-768. doi: 10.11728/cjss2021.05.760
引用本文: 王淼, 李正, 吕建永. 基于SABER的平流层顶温度的时空特征分析[J]. 空间科学学报, 2021, 41(5): 760-768. doi: 10.11728/cjss2021.05.760
WANG Miao, LI Zheng, LÜ Jianyong. Characteristics Analysis of the Spatial and Temporal Distributions of Stratopause Temperature Based on SABER Measurements[J]. Chinese Journal of Space Science, 2021, 41(5): 760-768. doi: 10.11728/cjss2021.05.760
Citation: WANG Miao, LI Zheng, LÜ Jianyong. Characteristics Analysis of the Spatial and Temporal Distributions of Stratopause Temperature Based on SABER Measurements[J]. Chinese Journal of Space Science, 2021, 41(5): 760-768. doi: 10.11728/cjss2021.05.760

基于SABER的平流层顶温度的时空特征分析

doi: 10.11728/cjss2021.05.760
基金项目: 

国家重点研发计划项目资助(2018YFC1407305)

详细信息
    作者简介:

    王淼,E-mail:maywangmiao@gmail.com

    通讯作者:

    吕建永,E-mail:jylu@nuist.edu.cn

  • 中图分类号: P352

Characteristics Analysis of the Spatial and Temporal Distributions of Stratopause Temperature Based on SABER Measurements

  • 摘要: 利用SABER探测器2002—2017年超过一个太阳活动周的数据,以大气垂直方向上40~60km的最大温度作为平流层顶温度(Tsp),分析50°S—50°N Tsp的时空分布特征.结果表明:Tsp具有明显的纬度特征和季节特征,在赤道和南北半球夏季温度较高,而在南北半球冬季的40°—50°纬度附近温度有最低值.再利用EOF方法分析Tsp,发现其第一模态的解释率达91%,且时间系数与平流层顶高度相关性最大,为-0.75,与平流层顶臭氧体积混合比相关性约0.49,与日地距离相关性为0.44,与太阳活动性(太阳活动指数,太阳黑子数)的相关性约0.33.依据该相关关系,进一步分析各变量原始场,发现Tsp和平流层顶臭氧体积混合比的纬度变化近似相反;与日地距离的季节变化有明显的负相关,约-0.81,且这种相关性与日地距离有弱的正相关关系;年平均Tsp在2002—2017年的变化约为2K,与F10.7的相关系数为0.6,在南北纬20°附近与太阳活动指数F10.7的相关性最大,约0.74.

     

  • [1] MOHANAKUMAR K, DEVANARAYANAN S. Solar cycle and equatorial stratopause temperature[J]. J. Earth Syst. Sci., 1983, 92(1):31-36
    [2] BARNETT J J. The mean meridional temperature behaviour of the stratosphere from November 1970 to November 1971 derived from measurements by the Selective Chopper Radiometer on Nimbus IV[J]. Quart. J. Roy. Meteorol. Soc., 1974, 100:505-530
    [3] LABITZKE K. The temperature in the upper stratosphere:Differences between hemispheres[J]. J. Geophys. Res., 1974, 79:2171-2175
    [4] KANZAWA H. Warm stratopause in the Antarctic winter[J]. J. Atmos. Sci., 1989, 46(3):435-438
    [5] GUO Wenjie, YAN Zhaoai, HU Xiong, et al. Seasonal variation of atmospheric temperature and gravity wave activity over Beijing area[J]. Chin. J. Space Sci., 2017, 37(2):177-184(郭文杰, 闫召爱, 胡雄, 等. 北京地区大气温度及重力波活动的季节变化[J]. 空间科学学报, 2017, 37(2):177-184)
    [6] CROOKS S A, GRAY L J. Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset[J]. J. Clim., 2005, 18(7):996-1015
    [7] FRAME T H A, GRAY L J. The 11-yr solar cycle in ERA-40 data:an update to 2008[J]. J. Clim., 2010, 23(8):2213-2222
    [8] LI Gang, TAN Yanke, LI Chongyin, et al. The distribution characteristics of total ozone and its relationship with stratospheric temperature during boreal winter in the recent 30 years[J]. Chin. J. Geophys., 2015, 58(5):1475-1491(李刚, 谭言科, 李崇银, 等. 近30年北半球冬季臭氧总量分布特征及其与平流层温度的关系[J]. 地球物理学报, 2015, 58(5):1475-1491)
    [9] REMSBERG E. Observation and attribution of temperature trends near the stratopause from HALOE[J]. J. Geophys. Res.:Atmos., 2019, 124:6600-6611
    [10] XIE Fei, TIAN Wenshou, LI Jianping, et al. The possible effects of future increase in methane emission on the stratospheric water vapor and global ozone[J]. Acta Meteorol. Sin., 2013, 71(3):555-567(谢飞, 田文寿, 李建平, 等. 未来甲烷排放增加对平流层水汽和全球臭氧的影响[J]. 气象学报, 2013, 71(3):555-567)
    [11] FRANCE J A, HARVEY V L, RANDALL C E, et al. A climatology of stratopause temperature and height in the polar vortex and anticyclones[J]. J. Geophys. Res., 2012, 117:D06116
    [12] FRANCE J A, HARVEY V L. A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause[J]. J. Geophys. Res. Atmos., 2013, 118:2241-2254
    [13] MLYNCZAK M G, HUNT L A, MERTENS C J, et al. Influence of solar variability on the infrared radiative cooling of the thermosphere from 2002 to 2014[J]. Geophys. Res. Lett., 2014, 41:2508-2513
    [14] RAMESH K, SRIDHARAN S, VIJAYA B R S. Dominance of chemical heating over dynamics in causing a few large mesospheric inversion layer events during January-February 2011[J]. J. Geophys. Res.:Space Phys., 2013, 118(10):6751-6765
    [15] MERTENS C J, MLYNCZAK M G, LOPEZ-PUERTAS M, et al. Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-μm Earth limb emission under non-LTE conditions[J]. Geophys. Res. Lett., 2001, 28:1391-1394
    [16] MERTENS C J, MLYNCZAK M G, LOPEZ-PUERTAS M, et al. Retrieval of kinetic temperature and carbon dioxide abundance from non-local thermodynamic equilibrium limb emission measurements made by the SABER experiment on the TIMED satellite[J]. Proc. SPIE Int. Soc. Opt. Eng., 2002, 4882:DOI: 10.1117/12.463358
    [17] REMSBERG E, LINGENFELSER G, HARVEY V L, et al. On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses[J]. J. Geophys. Res., 2003, 108(D19):4628
    [18] PEARSON K. On lines and plans of closest fit to system of points in space philos[J]. Magnetism, 1902, 6:559-572
    [19] PANG Yishu, ZHU Congwen, LIU Kai. Analysis of stability of EOF modes in summer rainfall anomalies in China[J]. Chin. J. Atmos. Sci., 2014, 38(6):1137-1146(庞轶舒, 祝从文, 刘凯. 中国夏季降水异常EOF模态的时间稳定性分析[J]. 大气科学, 2014, 38(6):1137-1146)
    [20] MARSH D R, SOLOMON S C, REYNOLDS A E. Empirical model of nitric oxide in the lower thermosphere[J]. J. Geophys. Res., 2004, 109:A07301
    [21] RUAN H, LEI J, DOU X, et al. An exospheric temperature model based on CHAMP observations and TIEGCM simulations[J]. Space Weather, 2018, 16(2):147-156
    [22] FLYNN S, KNIPP D J, MATSUO T, et al. Understanding the global variability in thermospheric nitric oxide flux using empirical orthogonal functions (EOFs)[J]. J. Geophys. Res.:Space Phys., 2018, 123:DOI: 10.1029/2018JA025353
    [23] LI Z, KNIPP D, WANG W, et al. An EOFs study of thermospheric nitric oxide flux based on TIEGCM simulations[J]. J. Geophys. Res.:Space Phys., 2019, 124:9695-9708
    [24] FU S, ZHAO L L, ZANK G P, et al. An ACE/CRIS-observation-based galactic cosmic rays heavy nuclei spectra model II[J]. Sci. China Phys. Mech. Astron., 2020, 63:219511
    [25] LU Jinpeng, XIE Fei, TIAN Wenshou, et al. Interannual variations in lower stratospheric ozone during the period 1984-2016[J]. J. Geophys. Res. Atmos., 2019, 124(14):8225-8241
    [26] LACIS A A, HANSEN J E. A parameterization for the absorption of solar radiation in the Earth's atmosphere[J]. J. Atmos. Sci., 1974, 31:118-133
    [27] MEINSHAUSEN Malte, SMITH S J, CALVIN K, et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300[J]. Clim. Change, 2011, 109(1-2SI):213-241
  • 加载中
计量
  • 文章访问数:  310
  • HTML全文浏览量:  71
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 修回日期:  2021-02-04
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回