留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月球氦-3资源的原位开采热释放行为研究

宋洪庆 杜恒畅 张杰 马冬宇 张贤国 寇珏

宋洪庆, 杜恒畅, 张杰, 马冬宇, 张贤国, 寇珏. 月球氦-3资源的原位开采热释放行为研究[J]. 空间科学学报, 2021, 41(5): 787-792. doi: 10.11728/cjss2021.05.787
引用本文: 宋洪庆, 杜恒畅, 张杰, 马冬宇, 张贤国, 寇珏. 月球氦-3资源的原位开采热释放行为研究[J]. 空间科学学报, 2021, 41(5): 787-792. doi: 10.11728/cjss2021.05.787
SONG Hongqing, DU Hengchang, ZHANG Jie, MA Dongyu, ZHANG Xianguo, KOU Jue. Release Behavior Research of In-situ Helium-3 Resources Extraction in Moon under Heating[J]. Chinese Journal of Space Science, 2021, 41(5): 787-792. doi: 10.11728/cjss2021.05.787
Citation: SONG Hongqing, DU Hengchang, ZHANG Jie, MA Dongyu, ZHANG Xianguo, KOU Jue. Release Behavior Research of In-situ Helium-3 Resources Extraction in Moon under Heating[J]. Chinese Journal of Space Science, 2021, 41(5): 787-792. doi: 10.11728/cjss2021.05.787

月球氦-3资源的原位开采热释放行为研究

doi: 10.11728/cjss2021.05.787
基金项目: 

中央高校基础研究经费(FRF-IC-19-012)和国家自然科学基金面上项目(11972073)共同资助

详细信息
    作者简介:

    宋洪庆,E-mail:songhongqing@ustb.edu.cn

  • 中图分类号: P184

Release Behavior Research of In-situ Helium-3 Resources Extraction in Moon under Heating

  • 摘要: 月球氦-3资源的原位利用不仅可以解决深空探测的能源供给问题,而且能够极大地减少深空探测的成本.选取钛铁矿作为月壤的代表矿物,建立了氦-3原子以空位和间隙两种缺陷赋存于钛铁矿中的分子动力学模型,阐述了不同温度下氦-3原子在钛铁矿中的扩散和释放行为.模拟计算结果表明:当氦-3在钛铁矿中扩散时,这些原子倾向于聚集成气泡.根据氦-3释放量随温度的增长率,整个加热释放的过程可以划分为两个阶段.月球氦-3资源原位开采的最优加热温度应在1000K以上,该温度下以不同形式赋存的氦-3均可以大量释放.

     

  • [1] SPUDIS P, LAVOIE A. Using the resources of the Moon to create a permanent, cislunar space faring system[C]//AIAA SPACE 2011 Conference. Long Beach:AIAA, 2011:2011-7185
    [2] SARGEANT H, ABERNETHY F, ANAND M, et al. Feasibility studies for hydrogen reduction of ilmenite in a static system for use as an ISRU demonstration on the lunar surface[J]. Planet. Space Sci., 2020, 180:104759
    [3] JUST G, SMITH K, JOY K, et al. Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilization and recommendations for future excavation experiments[J]. Planet. Space Sci., 2020, 180:104746
    [4] ANAND M, CRAWFORD I, BALAT-PICHELIN M, et al. A brief review of chemical and mineralogical resources on the Moon and likely Initial in Situ Resource Utilization (ISRU) applications[J]. Planet. Space Sci., 2012, 74:42
    [5] LI Zhijie, GUO Linli. Research on the technology of lunar in-situ resource utilization[J]. Space Int., 2017, 11(3):44
    [6] LOVEGREN N. Chemistry on the Moon:the quest for Helium-3[J/OL]. 21st Century Sci. Technol., 2014, 1-12. https://www.docin.com/p-1434256636.html
    [7] FUTAGAMI T, OZIMA M, NAGAL S, et al. Experiments on thermal release of implanted noble gases from minerals and their implications for noble gases in lunar soil grains[J]. Geochim. Cosmochim. Acta, 1993, 57(13):3177
    [8] ZHANG B, WANG J, LI M, et al. A molecular dynamics study of helium bubble formation and gas release near titanium surfaces[J]. J. Nucl. Mater., 2013, 438:178-182
    [9] JOHNSON J, SWINDLE T, LUCEY P. Estimated solar wind-implanted Helium-3 distribution on the Moon[J]. Geophys. Res. Lett., 1999, 26(3):385-388
    [10] FA W, JIN Y. Quantitative estimation of Helium-3 spatial distribution in the lunar regolith layer[J]. Icarus, 2007, 190:15-23
    [11] HE Shujun. Distribution Characteristics and Evolution Analysis of Lunar Tectonic Features on Mare Tranquillitatis[D]. Beijing:China University of Geosciences, 2014
    [12] ZHENG Mengran. Analysis of Lunar Tectonic Features and Composition on Mare Serenitaits and Tranquillitatis of the Moon[D]. Beijing:China University of Geosciences, 2017
    [13] SLYUTA E, YAKOVLEV O, VOROPAEV S, et al. He implantation and concentrations in minerals and lunar regolith particles[J]. Geochem. Int., 2013, 51(12):959-967
    [14] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117(1):1-19
    [15] JUSLIN N, NORDLUND K. Pair potential for Fe-He[J]. J. Nucl. Mater., 2008, 382:143-146
    [16] WANG J, HOU Q, SUN T, et al. Simulation of helium behavior in titanium crystals using molecular dynamics[J]. Chin. Phys. Lett., 2006, 23(7):1666
    [17] GOVERS K, LEMEHOV S, HOU M, et al. Molecular dynamics simulation of helium and oxygen diffusion in UO2±x[J]. J. Nucl. Mater., 2009, 395:131-139
    [18] FAN H, CHEN D, LIU P, et al. Structural and transport properties of FeO-TiO2 system through molecular dynamics simulations[J]. J. Non-Cryst. Solids, 2018, 493:57
    [19] ANUFRIEV G. Hopping diffusion of helium isotopes from samples of lunar soil[J]. Phys. Solid State, 2010, 52(10):2058-2062
    [20] MULLER H, JORDAN J, KALBITZER S, et al. Rare gas ion probe analysis of helium profiles in individual lunar soil particles[J]. Lunar Planet. Sci. Confer. Proc., 1976:937-951. DOI: 10.1186/1471-2458-7-150
  • 加载中
计量
  • 文章访问数:  506
  • HTML全文浏览量:  111
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-07
  • 修回日期:  2021-01-27
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回