Influence of Continuous Magnetic Activities on the Evolution of the Plasmasphere
-
摘要: 利用嫦娥三号极紫外相机观测的2014年2月21日等离子体层极紫外对数图像,分析了一系列磁活动状态下等离子体层晨侧视角的演化.由等离子体层质子的相空间分布,模拟了2014年2月18—22日发生一系列磁暴事件时等离子体层在磁赤道面的演化.通过观测与模拟发现,等离子体层实际的填充速度大于模拟时等离子体层的填充速度.推测昏侧与日侧之间的羽结构对侧面视角下向阳侧等离子体层顶的位置会造成影响.模拟中等离子体层整体对磁暴的响应在3h内,大磁暴对等离子体层的影响时间较长,可以达到1~2天.连续的磁暴事件对等离子体层的影响有叠加的效果.等离子体层的回填比侵蚀需要更长的时间.Abstract: In this paper, the evolution of the plasmasphere's morning side viewing was analyzed under a series of magnetic activities using the extreme ultraviolet logarithmic data observed by the Chang'E-3 extreme ultraviolet camera on 21 February 2014. Based on the phase space distribution of the protons, the evolution of the plasmasphere on the magnetic equatorial plane was simulated when a series of magnetic storm events occurred from 18 to 22 February 2014. Through observation and simulation, it is found that the actual filling speed of the plasmasphere is greater than the filling speed of the plasmasphere during the simulation. It is presumed that the plume structure between the dusk side and the sun side has an affect on the position of the plasmapause on the sun side from side view. In simulation, the overall response of the plasmasphere to the magnetic storm is within 3 hours, but large magnetic storm has a long-term impact on the plasmasphere, which can reach 1~2 days. Continuous magnetic storm events have a significant impact on the plasmasphere, there is a superimposed effect. Refilling of the plasmasphere takes longer than erosion.
-
[1] KOTOVA G A. The Earth's plasmasphere:state of studies[J]. Geomagn. Aeron., 2007, 47(4):409-422 [2] DARROUZET F, GALLAGHER D L, ANDRÉN, et al. Plasmaspheric density structures and dynamics:properties observed by the CLUSTER and IMAGE missions[J]. Space Sci. Rev., 2009, 145(1/2):55-106 [3] CHANDLER M O, CHAPPELL C R. Observations of the flow of H+ and He+ along magnetic field lines in the plasmasphere[J]. J. Geophys. Res., 1986, 91(A8):8847-8860 [4] CARPENTER D L, PARK C G. On what ionospheric workers should know about the plasmapause-plasmasphere[J]. Rev. Geophys., 1973, 11(1):133-154 [5] CARPENTER D L, ANDERSON R R. An ISEE/whistler model of equatorial electron density in the magnetosphere[J]. J. Geophys. Res., 1992, 97(A2):1097-1108 [6] CHAPPELL C R. Recent satellite measurements of morphology and dynamics of plasmasphere[J]. Rev. Geophys. Space Phys., 1972, 10(4):951 [7] SANDEL B R, GOLDSTEIN J, GALLAGHER D, et al. Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere[J]. Space Sci. Rev., 2003, 109(25):DOI:10.1023/B:SPAC.0000007511. 47727.5b [8] GALVAN D A, MOLDWIN M B, SANDEL B R. Diurnal variation in plasmaspheric He+ inferred from extreme ultraviolet images[J]. J. Geophys. Res., 2008, 113:A09216 [9] HUANG Y, XU R L, SHEN C, et al. Rotation of the Earth's plasmasphere at different radial distances[J]. Adv. Space Res., 2011, 48:1167-1171 [10] CHAPPELL C R. Recent satellite measurements of morphology and dynamics of plasmasphere[J]. Rev. Geophys. Space Phys., 1972, 10(4):951 [11] DARROUZET F, DE KEYSER J. The dynamics of the plasmasphere:recent results[J]. J. Atmos. Sol.:Terr. Phys., 2013, 99:53-60 [12] WILLIAMS D J, ROELOF E C, MICHELL D G. Global magnetospheric imaging[J]. Rev. Geophys., 1992, 30(3):183-208 [13] BURCH J L. Magnetospheric imaging:promise to reality[J]. Rev. Geophys., 2005, 43(3):RG3001 [14] SANDEL B R, BROADFOOT A L, CURTIS C C, et al. The extreme ultraviolet imager investigation for the IMAGE mission[J]. Space Sci. Rev., 2000, 91(1/2):197-242 [15] GOLDSTEIN J, SANDEL B R, FORRESTER W T, et al. Global plasmasphere evolution 22-23 April 2001[J]. J. Geophys. Res., 2005, 110(A12):DOI: 10.1029/2005JA011282 [16] ZHANG X X, HE F, CHEN B, et al. Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang'E-3 EUV Camera[J]. Earth Planet. Phys., 2017, 1:35-43 [17] IP W H, YAN J, LI C L, et al. Preface:the Chang'E-3 lander and rover mission to the Moon[J]. Res. Astron. Astrophys., 2014, 14(12):1511-1513 [18] CHEN B, SONG K F, LI Z H, et al. Development and calibration of the Moon-based EUV camera for Chang'E-3[J]. Res. Astron. Astrophys., 2014, 14(12):1654-1663 [19] TROSHICHEV O, SORMAKOV D, JANZHURA A. Relation of PC index to the geomagnetic storm Dst variation[J]. J. Atmos. Sol.:Terr. Phys., 2011, 76:611-622 [20] TROSHICHEV O, JANZHURA A. Relationship between the PC and AL indices during repetitive bay-like magnetic disturbances in the auroral zone[J]. J. Atmos. Sol.:Terr. Phys., 2009, 71(12):1340-1352 [21] SERGEEV V A, PELLINEN R J, PULKKINEN T I. Steady magnetospheric convection:a review of recent results[J]. Space Sci. Rev., 1996, 75(3/4):551-604 [22] SERGEEV V A. On the state of the magnetosphere during prolonged periods of the southward oriented IMF[J]. Phys. Sol.:Terr. Postdam, 1977, 5(39):1 [23] HE Z H, LIU Z X, SHEN C, et al. Identify the radial distance of plasma dispersionless injection boundary from injection source[J]. Chin. Phys. Lett., 2008, 25(2):783-786 [24] DEJONG A D, RIDLEY A J, CLAUER C R. Balanced reconnection intervals:four case studies[J]. Ann. Geophys., 2008, 26(12):3897-3912 [25] YAN Y, WANG H N, HE H, et al. Analysis of observational data from Extreme Ultra-Violet Camera onboard Chang'E-3 mission[J]. Astrophys. Space Sci., 2016, 361:76 [26] HE H, SHEN C, WANG H N, et al. Response of plasmaspheric configuration to substorms revealed by Chang'E 3[J]. Sci. Rep., 2016, 6:32362 [27] GOLDSTEIN J, PASCUALE S, KLETZING C, et al. Simulation of Van Allen Probes plasmapause encounters[J]. J. Geophys. Res. Space Phys., 2014, 119:7464-7484 [28] SHEN C, LIU Z X. A physics-based study of the Dst-AL relationship[J]. J. Geophys. Res., 2002, 107(A1):1009 [29] JI Yong. The Numerical Simulation of the Ring Current[D]. Beijing:University of Chinese Academy of Sciences, 2014(纪勇. 地球环电流演化数值模拟[D]. 北京:中国科学院大学, 2014) [30] O'BRIEN T P, MOLDWIN M B. Empirical plasmapause models from magnetic indices[J]. Geophys. Res. Lett., 2003, 30(4):1152 -
-
计量
- 文章访问数: 625
- HTML全文浏览量: 175
- PDF下载量: 24
-
被引次数:
0(来源:Crossref)
0(来源:其他)