Global Ionospheric TEC and ROTI Variations during a Moderate Geomagnetic Storm
-
摘要: 地磁暴发生时,电离层会有偏离平均水平的强烈扰动.基于全球电离层TEC及其时间变化率ROTI (Rate of TEC Index)数据,对2014年8月一次中等强度磁暴期间的全球电离层影响进行了分析,探讨了磁暴所引发电离层暴的可能机制.研究发现,本次磁暴伴随有明显的电离层暴效应.磁暴期间:南半球电离层以正相暴为主,北半球电离层暴则整体表现为短暂正相暴后长时间强的负相暴;电离层在北半球的下降比南半球强,并且这种下降持续了约一周时间;低纬区域电离层变化幅度明显小于中纬区域,高纬区域则主要表现为负暴效应;赤道北驼峰出现了明显的南移现象,直至磁赤道两侧双驼峰结构消失.对磁暴期间三个不同扇区的电离层ROTI变化的分析表明:欧洲—非洲扇区磁暴前有电离层闪烁发生,磁暴发生后消失,而东亚—澳大利亚及美洲扇区则无此现象出现.研究结果表明,此次磁暴期间的电离层变化存在明显的时间和空间差异.
-
关键词:
- 地磁暴 /
- 电离层 /
- 总电子含量 /
- 总电子含量变化率指数
Abstract: The ionosphere will have strong disturbances on geomagnetic storm days. The physical mechanism causing an ionospheric disturbance is very complex, various dynamics and electrodynamics processes in magnetosphere/thermosphere lead to great differences in ionospheric morphology and response in different locations and different time during a geomagnetic storm. Therefore, the geomagnetic storm has always been a hot and difficult issue in ionospheric research. In August 2014, under the influence of a solar flare explosion and two CME events, a strong magnetic storm was triggered on 27 August, accompanied by an ionospheric storm effect. The maximum Kp index reached 4.7, and the lowest Dst index reached -80 nT, reaching the level of moderate intensity geomagnetic storm. Based on the data of global ionospheric TEC and Rate of TEC Index (ROTI), the global ionospheric effects at different sectors in August 2014 were analyzed. Possible mechanisms responsible for ionospheric disturbances were also discussed. It is found that the ionosphere in the geomagnetic storm has an obvious ionospheric storm effect. During the magnetic storm, the southern hemisphere was dominated by positive storms while the northern hemisphere was characterized by a positive storm followed by a long duration strong negative storm, and the negative phase storm duration was significantly longer than the positive storm; the amplitude variation at low latitude was smaller than that at mid-latitude and the high latitude mainly performed negative storm effects; the peaks of Equatorial Ionospheric Anomaly (EIA) disappeared after the magnetic storm occurs due to the movement of EIA towards the equator. The analysis of ionospheric irregularities during geomagnetic storms shows that ionospheric scintillation occurs before the magnetic storm at European-African sector and disappears after the geomagnetic storm. The results show that there are obvious temporal and spatial differences in the ionospheric changes during the storm.-
Key words:
- Geomagnetic storm /
- Ionosphere /
- TEC /
- ROTI
-
[1] LU Fang, XU Jisheng, ZOU Yuhua. Analysis of observations of ionospheric storms and tid using a GPS- Array[J]. J. Wuhan Univ.:Nat. Sci. Ed., 2004, 50(3):365-369(鲁芳, 徐继生, 邹玉华. 电离层暴和行扰的GPS台网观测与分析[J]. 武汉大学学报:理学版, 2004, 50(3):365-369) [2] ZHAO Biqiang. Studies on the Annual and Semiannual Anomalies and Storm Characteristics of Mid-and Low Latitudes Ionosphere[D]. Beijing:Chinese Academy of Sciences, 2006(赵必强. 中低纬电离层年度异常与暴时特性研究[D]. 北京:中国科学院, 2006) [3] DENG Zhongxin, LIU Ruiyuan, ZHEN Weimin, et al. Study on the ionospheric TEC storms over China[J]. Chin. J. Geophys., 2012, 55(7):2177-2184(邓忠新, 刘瑞源, 甄卫民, 等. 中国地区电离层TEC暴扰动研究[J]. 地球物理学报, 2012, 55(7):2177-2184) [4] AZZOUZI B I, MIGOYA-ORU'E Y, MAZAUDIER C A, et al. Signatures of solar event at middle and low latitudes in the Europe-African sector, during geomagnetic storms, October 2013[J]. Adv. Space Res., 2015, 56(9):2040-2055 [5] SUN Wenjie, NING Baiqi, ZHAO Biqiang, et al. Analysis of ionospheric features in middle and low latitude region of China during the geomagnetic storm in March 2015[J]. Chin. J. Geophys., 2017, 60(1):1-10(孙文杰, 宁百齐, 赵必强, 等. 2015年3月磁暴期间中国中低纬地区电离层变化分析[J]. 地球物理学报, 2017, 60(1):1-10) [6] ASTAFYEVA E, ZAKHARENKOVA I, FORSTER M. Ionospheric response to the 2015 St. Patrick's Day storm:a global multi-instrumental overview[J]. J. Geophys. Res.:Space Phys., 2015, 120(10):9023-9037 [7] NAVA B, RODRÍGUEZ ZULUAGA J, ALAZO CUARTAS K, et al. Middle- and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm[J]. J. Geophys. Res. Space Phys., 2016, 121(4).DOI: 10.1002/2015JA022299 [8] AFRAIMOVICH E L, ASTAFYEVA E I, OINATS A V, et al. Global electron content:a new conception to track solar activity[J]. Ann. Geophys., 2008, 26(2):763-769 [9] PAN Lijing. Studies on Monitoring and Modeling of Polar Ionosphere Scintillation Based on GNSS[D]. Tianjin:Civil Aviation University of China, 2015(潘丽静. 基于GNSS数据的极区电离层闪烁监测及建模研究[D]. 天津:中国民航大学, 2015) [10] PI X, MANUCCI A J, LINDQWISTER U J, et al. Monitoring of global ionospheric irregularities using the worldwide GPS network[J]. Geophys. Res. Lett., 1997, 24(18):2283-2286 [11] CHERNIAK I, KRANKOWSKI A, ZAKHARENKOVA I. ROTI Maps:a new IGS ionospheric product characterizing the ionospheric irregularities occurrence[J]. GPS Solut., 2018, 22(3):69 [12] SIERADZKI R, PAZIEWSKI J. GNSS-based analysis of high latitude ionospheric response on a sequence of geomagnetic storms performed with ROTI and a new relative STEC indicator[J]. J. Space Weather Space Clim., 2019, 9.DOI: 10.1051/swsc/2019001 [13] SANTOS A M, ABDU M A, SOBRAL J H A, et al. Strong longitudinal difference in ionospheric responses over Fortaleza (Brazil) and Jicamarca (Peru) during the January 2005 magnetic storm, dominated by northward IMF[J]. J. Geophys. Res. Space Phys., 2012, 117(A8):101-110 [14] BLANC M, RICHMOND A D. Ionospheric disturbance dynamo[J]. J. Geophys. Res., 1980, 85:A4 [15] FULLER-ROWELL T J, CODRESCU M V, RISHBETH H, et al. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms[J]. J. Geophys. Res. Space Phys., 1996, 101(A2):2343-2354 [16] BALAN N, SHIOKAWA K, OTSUKA Y, et al. A physical mechanism of positive ionospheric storms at low and mid latitudes through observations and modeling[J]. J. Geophys. Res. Atmos., 2010, 115(A2):A02304 [17] MENGIST C K. Response of ionosphere over Korea and adjacent areas to 17 March 2015 geomagnetic storm[J]. Adv. Space Res., 2019, 64(1):183-198 [18] SHIMEIS A, AMORY-MAZAUDIER C, FLEURY R, et al. Transient variations of vertical total electron content over some African stations from 2002 to 2012[J]. Adv. Space Res., 2014, 54(11):2159-2171 [19] QIU Na. Statistical Analysis of the Ionosphere Response to the CIR and CME[D]. Beijing:University of Chinese Academy of Sciences, 2015(邱娜. 电离层对CIR和CME响应的统计分析[D]. 北京:中国科学院大学, 2015) [20] ZHAO Biqiang, WAN Weixing, LEI Jiuhou, et al. Positive ionospheric storm effects at Latin America longitude during thesuperstorm of 20-22 November 2003:Revisit[J]. Ann. Geophys., 2012, 30:831-840 [21] ZHAO Biqiang, YANG Changjun, CAI Yihui, et al. East-west difference in the ionospheric response of the March 1989 great magnetic storm throughout East Asian region[J]. J. Geophys. Res.:Space Phys., 2019, 124(11):9364-9380 -
-
计量
- 文章访问数: 1601
- HTML全文浏览量: 219
- PDF下载量: 173
-
被引次数:
0(来源:Crossref)
0(来源:其他)