留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次中等磁暴期间全球电离层TEC及ROTI指数变化分析

欧明 吴家燕 陈龙江 甄卫民

欧明, 吴家燕, 陈龙江, 甄卫民. 一次中等磁暴期间全球电离层TEC及ROTI指数变化分析[J]. 空间科学学报, 2021, 41(6): 887-897. doi: 10.11728/cjss2021.06.887
引用本文: 欧明, 吴家燕, 陈龙江, 甄卫民. 一次中等磁暴期间全球电离层TEC及ROTI指数变化分析[J]. 空间科学学报, 2021, 41(6): 887-897. doi: 10.11728/cjss2021.06.887
OU Ming, WU Jiayan, CHEN Longjiang, ZHEN Weimin. Global Ionospheric TEC and ROTI Variations during a Moderate Geomagnetic Storm[J]. Chinese Journal of Space Science, 2021, 41(6): 887-897. doi: 10.11728/cjss2021.06.887
Citation: OU Ming, WU Jiayan, CHEN Longjiang, ZHEN Weimin. Global Ionospheric TEC and ROTI Variations during a Moderate Geomagnetic Storm[J]. Chinese Journal of Space Science, 2021, 41(6): 887-897. doi: 10.11728/cjss2021.06.887

一次中等磁暴期间全球电离层TEC及ROTI指数变化分析

doi: 10.11728/cjss2021.06.887 cstr: 32142.14.cjss2021.06.887
基金项目: 

国家重点研发计划项目(2018YFF01013703),装备技术基础预研项目(315030409)和中国电波传播研究所稳定支持科研经费资助项目(A131902W03)共同资助

详细信息
    作者简介:
    • 欧明,E-mail:ohm1122@163.com
  • 中图分类号: P352

Global Ionospheric TEC and ROTI Variations during a Moderate Geomagnetic Storm

  • 摘要: 地磁暴发生时,电离层会有偏离平均水平的强烈扰动.基于全球电离层TEC及其时间变化率ROTI (Rate of TEC Index)数据,对2014年8月一次中等强度磁暴期间的全球电离层影响进行了分析,探讨了磁暴所引发电离层暴的可能机制.研究发现,本次磁暴伴随有明显的电离层暴效应.磁暴期间:南半球电离层以正相暴为主,北半球电离层暴则整体表现为短暂正相暴后长时间强的负相暴;电离层在北半球的下降比南半球强,并且这种下降持续了约一周时间;低纬区域电离层变化幅度明显小于中纬区域,高纬区域则主要表现为负暴效应;赤道北驼峰出现了明显的南移现象,直至磁赤道两侧双驼峰结构消失.对磁暴期间三个不同扇区的电离层ROTI变化的分析表明:欧洲—非洲扇区磁暴前有电离层闪烁发生,磁暴发生后消失,而东亚—澳大利亚及美洲扇区则无此现象出现.研究结果表明,此次磁暴期间的电离层变化存在明显的时间和空间差异.

     

  • [1] LU Fang, XU Jisheng, ZOU Yuhua. Analysis of observations of ionospheric storms and tid using a GPS- Array[J]. J. Wuhan Univ.:Nat. Sci. Ed., 2004, 50(3):365-369(鲁芳, 徐继生, 邹玉华. 电离层暴和行扰的GPS台网观测与分析[J]. 武汉大学学报:理学版, 2004, 50(3):365-369)
    [2] ZHAO Biqiang. Studies on the Annual and Semiannual Anomalies and Storm Characteristics of Mid-and Low Latitudes Ionosphere[D]. Beijing:Chinese Academy of Sciences, 2006(赵必强. 中低纬电离层年度异常与暴时特性研究[D]. 北京:中国科学院, 2006)
    [3] DENG Zhongxin, LIU Ruiyuan, ZHEN Weimin, et al. Study on the ionospheric TEC storms over China[J]. Chin. J. Geophys., 2012, 55(7):2177-2184(邓忠新, 刘瑞源, 甄卫民, 等. 中国地区电离层TEC暴扰动研究[J]. 地球物理学报, 2012, 55(7):2177-2184)
    [4] AZZOUZI B I, MIGOYA-ORU'E Y, MAZAUDIER C A, et al. Signatures of solar event at middle and low latitudes in the Europe-African sector, during geomagnetic storms, October 2013[J]. Adv. Space Res., 2015, 56(9):2040-2055
    [5] SUN Wenjie, NING Baiqi, ZHAO Biqiang, et al. Analysis of ionospheric features in middle and low latitude region of China during the geomagnetic storm in March 2015[J]. Chin. J. Geophys., 2017, 60(1):1-10(孙文杰, 宁百齐, 赵必强, 等. 2015年3月磁暴期间中国中低纬地区电离层变化分析[J]. 地球物理学报, 2017, 60(1):1-10)
    [6] ASTAFYEVA E, ZAKHARENKOVA I, FORSTER M. Ionospheric response to the 2015 St. Patrick's Day storm:a global multi-instrumental overview[J]. J. Geophys. Res.:Space Phys., 2015, 120(10):9023-9037
    [7] NAVA B, RODRÍGUEZ ZULUAGA J, ALAZO CUARTAS K, et al. Middle- and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm[J]. J. Geophys. Res. Space Phys., 2016, 121(4).DOI: 10.1002/2015JA022299
    [8] AFRAIMOVICH E L, ASTAFYEVA E I, OINATS A V, et al. Global electron content:a new conception to track solar activity[J]. Ann. Geophys., 2008, 26(2):763-769
    [9] PAN Lijing. Studies on Monitoring and Modeling of Polar Ionosphere Scintillation Based on GNSS[D]. Tianjin:Civil Aviation University of China, 2015(潘丽静. 基于GNSS数据的极区电离层闪烁监测及建模研究[D]. 天津:中国民航大学, 2015)
    [10] PI X, MANUCCI A J, LINDQWISTER U J, et al. Monitoring of global ionospheric irregularities using the worldwide GPS network[J]. Geophys. Res. Lett., 1997, 24(18):2283-2286
    [11] CHERNIAK I, KRANKOWSKI A, ZAKHARENKOVA I. ROTI Maps:a new IGS ionospheric product characterizing the ionospheric irregularities occurrence[J]. GPS Solut., 2018, 22(3):69
    [12] SIERADZKI R, PAZIEWSKI J. GNSS-based analysis of high latitude ionospheric response on a sequence of geomagnetic storms performed with ROTI and a new relative STEC indicator[J]. J. Space Weather Space Clim., 2019, 9.DOI: 10.1051/swsc/2019001
    [13] SANTOS A M, ABDU M A, SOBRAL J H A, et al. Strong longitudinal difference in ionospheric responses over Fortaleza (Brazil) and Jicamarca (Peru) during the January 2005 magnetic storm, dominated by northward IMF[J]. J. Geophys. Res. Space Phys., 2012, 117(A8):101-110
    [14] BLANC M, RICHMOND A D. Ionospheric disturbance dynamo[J]. J. Geophys. Res., 1980, 85:A4
    [15] FULLER-ROWELL T J, CODRESCU M V, RISHBETH H, et al. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms[J]. J. Geophys. Res. Space Phys., 1996, 101(A2):2343-2354
    [16] BALAN N, SHIOKAWA K, OTSUKA Y, et al. A physical mechanism of positive ionospheric storms at low and mid latitudes through observations and modeling[J]. J. Geophys. Res. Atmos., 2010, 115(A2):A02304
    [17] MENGIST C K. Response of ionosphere over Korea and adjacent areas to 17 March 2015 geomagnetic storm[J]. Adv. Space Res., 2019, 64(1):183-198
    [18] SHIMEIS A, AMORY-MAZAUDIER C, FLEURY R, et al. Transient variations of vertical total electron content over some African stations from 2002 to 2012[J]. Adv. Space Res., 2014, 54(11):2159-2171
    [19] QIU Na. Statistical Analysis of the Ionosphere Response to the CIR and CME[D]. Beijing:University of Chinese Academy of Sciences, 2015(邱娜. 电离层对CIR和CME响应的统计分析[D]. 北京:中国科学院大学, 2015)
    [20] ZHAO Biqiang, WAN Weixing, LEI Jiuhou, et al. Positive ionospheric storm effects at Latin America longitude during thesuperstorm of 20-22 November 2003:Revisit[J]. Ann. Geophys., 2012, 30:831-840
    [21] ZHAO Biqiang, YANG Changjun, CAI Yihui, et al. East-west difference in the ionospheric response of the March 1989 great magnetic storm throughout East Asian region[J]. J. Geophys. Res.:Space Phys., 2019, 124(11):9364-9380
  • 加载中
计量
  • 文章访问数:  1601
  • HTML全文浏览量:  219
  • PDF下载量:  173
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2020-08-15
  • 修回日期:  2021-05-31
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回