留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Novel Magnetic Configuration for Space Radiation Active Shielding

CAI Minghui XU Liangliang YANG Tao HAN Jianwei

CAI Minghui, XU Liangliang, YANG Tao, HAN Jianwei. A Novel Magnetic Configuration for Space Radiation Active Shielding[J]. 空间科学学报, 2021, 41(6): 920-927. doi: 10.11728/cjss2021.06.920
引用本文: CAI Minghui, XU Liangliang, YANG Tao, HAN Jianwei. A Novel Magnetic Configuration for Space Radiation Active Shielding[J]. 空间科学学报, 2021, 41(6): 920-927. doi: 10.11728/cjss2021.06.920
CAI Minghui, XU Liangliang, YANG Tao, HAN Jianwei. A Novel Magnetic Configuration for Space Radiation Active Shielding[J]. Chinese Journal of Space Science, 2021, 41(6): 920-927. doi: 10.11728/cjss2021.06.920
Citation: CAI Minghui, XU Liangliang, YANG Tao, HAN Jianwei. A Novel Magnetic Configuration for Space Radiation Active Shielding[J]. Chinese Journal of Space Science, 2021, 41(6): 920-927. doi: 10.11728/cjss2021.06.920

A Novel Magnetic Configuration for Space Radiation Active Shielding

doi: 10.11728/cjss2021.06.920 cstr: 32142.14.cjss2021.06.920
基金项目: 

Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA17010301)

详细信息
    通讯作者:
    • CAI Minghui,E-mail:caiminghui@nssc.ac.cn
  • 中图分类号: TM153;V4

A Novel Magnetic Configuration for Space Radiation Active Shielding

Funds: 

Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA17010301)

  • 摘要: Space radiation has been identified as the main health hazard to crews involved in manned Mars missions. Active shielding is more effective than passive shielding to the very energetic particles from cosmic rays. Particle motion in a magnetic field is studied based on the single-particle theory and Monte Carlo method. By comparing the shielding efficiency of different magnetic field configurations, a novel active magnetic shielding configuration with lower mass cost and power consumption is proposed for manned Mars missions. The new magnetic configuration can shield 92.8% of protons and 84.4% of alpha particles with E < 4 GeV·n-1, when considering the passive shielding contribution of 10.0 g·cm-2 Al Shielding, the required magnetic stiffness can be reduced from 27 Tm to 16 Tm. The detailed analysis of mass cost and power consumption shows that active shielding will be a promising means to protect crews from space radiation exposure in manned Mars missions.

     

  • [1] SPILLANTINI P. Superconducting magnets and mission strategies for protection from ionizing radiation in interplanetary manned missions and interplanetary habitats[J]. Acta Astronaut., 2011, 68(9/10):1430-1439
    [2] ZEITLIN C, HASSLER D M, CUCINOTTA F A, et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory[J]. Science, 2013, 340(6136):1080-1084
    [3] CHARLES M W. ICRP Publication 103:recommendations of the ICRP[J]. Radiat. Protect. Dosim., 2008, 4:1618
    [4] BARTHEL J, SARIGUL-KLIJN N. A review of radiation shielding needs and concepts for space voyages beyond Earth's magnetic influence[J]. Prog. Aeros. Sci., 2019, 110:100553.1-100553.16
    [5] MANNING B, SINGLETERRY R. Radiation engineering analysis of shielding materials to assess their ability to protect astronauts in deep space from energetic particle radiation[J]. Acta Astron., 2020, 171. DOI:10. 1016/j.actaastro.2020.02.020
    [6] NAITO M, KODAIRA S, OGAWARA R, et al. Investigation of shielding material properties for effective space radiation protection[J]. Life Sci. Space Res., 2020, 26. DOI: 10.1016/j.lssr.2020.05.001
    [7] SINGLETERRY R C. Radiation engineering analysis of shielding materials to assess their ability to protect astronauts in deep space from energetic particle radiation[J]. Acta Astron., 2013, 91:49-54
    [8] SUSSINGHAM J C, WATKINS S A, COCKS F H. Forty years of development of active systems for radiation protection of spacecraft[J]. J. Astron. Sci., 1999, 47(3):165- 175
    [9] TOWNSEND L W. Overview of active methods for shielding spacecraft from energetic space radiation[J]. Phys. Medica, 2001, 17(1):84
    [10] SPILLANTINI P. Manned exploration and exploitation of solar system:passive and active shielding for protecting astronauts from ionizing radiation-a short overview[J]. Acta Astronaut., 2014, 104(2):509-515
    [11] WASHBURN S A, BLATTNIG S R, SINGLETERRY R C, et al. Active magnetic radiation shielding system analysis and key technologies[J]. Life Sci. Space Res., 2015, 4:22-34
    [12] VUOLO M, GIRAUDO M, MUSENICH R, et al. Monte Carlo simulations for the space radiation superconducting shield project (SR2S)[J]. Life Sci. Space Res., 2016, 8:22-29
    [13] SIMPSON J A. Elemental and isotopic composition of the galactic cosmic rays[J]. Ann. Rev. Nucl. Part, 2003, 33(1):323-382
    [14] WASHBURN S A, BLATTNIG S R, SINGLETERRY R C, et al. Analytical-HZETRN model for rapid assessment of active magnetic radiation shielding[J]. Adv. Space Res., 2014, 53(1):8-17
    [15] HOFFMAN J, FISHER P, BATISHCHEV O. Use of superconducting magnet technology for astronauts radiation protection[C]//NIAC Phase I Fellows Meeting Atlanta. Georgia:2005
    [16] MUSENICH R, CALVELLI V, FARINON S, et al. Space radiation superconducting shields[J]. J. Phys. Conf., 2014, 507(3):032033
  • 加载中
计量
  • 文章访问数:  404
  • HTML全文浏览量:  69
  • PDF下载量:  31
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2020-12-22
  • 修回日期:  2021-10-25
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回