Linear Surrogate Uncertainty Analysis Method for Distributed Satellite System
-
摘要: 分布式卫星系统在空间科学领域具有广泛的应用前景,同时也对概念设计阶段的分析工作提出了更高的要求.在分布式卫星系统概念设计阶段,评价不确定性参数对于最终探测效能的影响有着重要的工程应用价值.传统的不确定性分析方法存在解析困难、数值模拟计算效率低且耦合关系表征不明确的缺点.本文结合概念设计阶段不确定性分析的特点和需求,提出一种线性回归近似替代模型,将不确定性参数对于探测效能影响的结果计算降维为一个线性组合系数的求解问题.利用一个空间多点探测物理场分界面任务作为典型事例进行仿真验证,结果表明,相比传统数值模拟方法,本文方法在计算效率上具有明显优势且对关键不确定性参数有一定识别作用.Abstract: Distributed satellite system is widely used in space science mission. The complexity of system brings challenges in conceptual design phase. To evaluate the impact of uncertainty parameters on the system detection result is significant. Traditional analysis method such as differential method and Monte Carlo method have disadvantages in solving this problem. Differential method needs system can be expressed explicit while Monte Carlo method is time consuming which cannot fit fast iteration demand. In this paper, a surrogated linear model method is proposed. The problem is solved by reducing the dimensionality of the results of the uncertainty parameters into a linear combination of coefficients. The coefficients are obtained by weighted regression method using data generated by Monte Carlo process. Simulated with a typical distributed satellite mission, the proposed method is valid compared to Monte Carlo simulation method.
-
[1] SHAW G B, HASTINGS D E. A Generalized Analysis Methodology for Distributed Satellite Systems[M]. Netherlands:Springer, 1998:33-49 [2] LIN Laixing. Technological development and application prospects of distributed small satellite system[J]. Spacec. Eng., 2010, 19(1):60-66(林来兴. 分布式小卫星系统的技术发展与应用前景[J]. 航天器工程, 2010, 19(1):60-66) [3] MENG Xin, YANG Zhen. The space science mission concurrent design platform[J]. E-Sci. Technol. Appl., 2011, 2(3):58-68(孟新, 杨震. 空间科学探测任务集同论证平台[J]. 科研信息化技术与应用, 2011, 2(3):58-68) [4] YAO Wen, CHEN Xiaoqian, LUO Wencai, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Prog. Aeros. Sci., 2011, 47(6):450-479 [5] ZHAO Min, LIU Baiqi, SU Hua. Review of UMDO for system design of flight vehicle[J]. J. Astron., 2018, 39(6):593-604(赵民, 刘百奇, 粟华. 面向飞行器总体设计的UMDO技术综述[J]. 宇航学报, 2018, 39(6):593-604) [6] SAHINIDIS N V. Optimization under uncertainty:state-of-the-art and opportunities[J]. Comput. Chem. Eng., 2004, 28(6):971-983 [7] CRESPO L G, KENNY S P. Special edition on uncertainty quantification of the AIAA Journal of Aerospace Computing, Information, and Communication[J]. J. Aeros. Comput. Inf. Commun., 2015, 12(1):9 [8] LOU Liangsheng, LIU Zhiming, LI Chongwei. Technique of determining base-line for InSAR based on formation-flying satellites[J]. Remote Sens. Inf., 2013, 28(2):9-11(楼良盛, 刘志铭, 李崇伟. 卫星编队InSAR基线的确定方法[J]. 遥感信息, 2013, 28(2):9-11) [9] DU Peng, FU Mengyin, ZHANG Hongye, et al. Analysis and modeling of GPS positioning error[J]. J. Beijing Instit. Technol., 1998, 18(4):456-460(杜鹏, 傅梦印, 张鸿业, 等. GPS定位误差分析与建模[J]. 北京理工大学学报, 1998, 18(4):456-460) [10] ROBERT P, DUNLOP M W, ROUX A, et al. Accuracy of current density determination[J]. J. Appl. Electrochem., 1998, 5(1):39-41 [11] ROBERT P, ROUX A. Accuracy of the Estimate of J Via Multipoint Measurements[R]. Graz:Space Plasma Physics Investigation by Cluster and Regatta, 1990 [12] DUNLOP M W, BAOLGH A, SOUTHWOOD D J, et al. Configurational Sensitivity of Multipoint Magnetic Field Measurements[R]. Graz:Space Plasma Physics Investigation by Cluster and Regatta, 1990 [13] DUNLOP M W, BAOLGH A, GLASSMEIER K H. Four-point Cluster application of magnetic field analysis tools:the discontinuity analyzer[J]. J. Geophys. Res. Space Phys., 2002, 107(A11):SMP 23-1-SMP 23-14 [14] YANG Zhen, MENG Xin, NIU Wenlong, et al. A study for quality factors of multi-spacecraft formation detection efficiency[J]. J. Astronaut., 2015, 36(9):981-987(杨震, 孟新, 牛文龙, 等. 多航天器协同探测星簇构型探测效能的评价方法[J]. 宇航学报, 2015, 36(9):981-987) [15] ZHANG Longsong, LI Dianqing, CAO Zijun, et al. Efficient reliability analysis of excavation deformation considering statistical uncertainty using monte carlo simulation[J]. Eng. J. Wuhan Univ., 2019, 52(3):207-215(张隆松, 李典庆, 曹子君, 等. 考虑统计不确定性的基坑变形可靠度高效蒙特卡罗分析方法[J]. 武汉大学学报:工学版, 2019, 52(3):207-215) [16] CHEN Zhaoyue, LIU Li, CHEN Shulin, et al. Interval uncertainty analysis of soft-landing dynamics of lunar lander[J]. Acta Armam., 2019, 40(2):442-448 [17] YUAN He, LIU Li, KANG Jie. Multilevel Monte Carlo based uncertainty analysis of launch vehicle structural dynamics[J]. J. Projectiles Rocket. Missil. Guid., 2019, 39(3):144-148 [18] PENG Wensheng, ZHANG Jianguo, WANG Pidong, et al. Comprehensive reliability analysis of the aerospace mechanism with hybrid uncertainty information[J]. J. Astronaut., 2015, 36(5):596-604(彭文胜, 张建国, 王丕东, 等. 混合不确定信息航天机构可靠性综合分析方法[J]. 宇航学报, 2015, 36(5):596-604) [19] ZHANG Hairui, WANG Hao, WANG Yao, et al. Uncertainty-based reliability modeling and analysis method of flight vehicle seperation[J]. J. Astronaut., 2019, 40(4):378-385(张海瑞, 王浩, 王尧, 等. 基于不确定性的飞行器分离可靠性建模与分析方法[J]. 宇航学报, 2019, 40(4):378-385) [20] ROBERT P, ROUX A, HARVEY C C, et al. Analysis Methods for Multi-Spacecraft Data[M]. Noordwijk:ESA Publication, 1998:323-348 [21] HARVEY C C. Analysis Methods for Multi-Spacecraft Data[M]. Noordwijk:ESA Publication, 1998:307-322 [22] XIAO N C, HUANG H Z, WANG Z, et al. Reliability sensitivity analysis for structural systems in interval probability form[J]. Struct. Multidiscipl. Optim., 2011, 44(5):691-705 -
-
计量
- 文章访问数: 545
- HTML全文浏览量: 127
- PDF下载量: 19
-
被引次数:
0(来源:Crossref)
0(来源:其他)