Configuration Keeping Control of Stereo Imaging with Dual-satellite Following Flying Formation
-
摘要: 针对强干扰及输出饱和条件下微小双星立体成像的构形保持问题,提出一种基于观测器的抗干扰复合控制策略.根据立体成像双星跟飞运动机理,建立双星相对运动动力学模型;设计了一种自适应干扰观测器,可同时实现系统状态和干扰信息的在线估计,并采用Lyapunov稳定性理论和线性矩阵不等式技术给出观测器存在条件.采用极点配置方法改善观测器系统的动态性能,引入指数衰减因子提高控制器的收敛速度.考虑执行机构的输出饱和特性,提出一种加权PD+LQR反馈与干扰前馈补偿的复合控制策略,能够抑制未知干扰的影响,保证系统的动态和稳态性能,具备双星构形保持控制能力.仿真结果验证了所提算法的有效性.Abstract: Aiming at the configuration maintenance problem of stereo imaging with micro double satellites under strong interference and output saturation, a composite anti-disturbance control strategy combining LQR optimal control and PD control is proposed. According to the relative orbit motion mechanism of dual-satellite following flying formation for stereo imaging, the dynamic modeling of relative motion is built with a dynamic analysis of double satellite following formation carried out, and the system motion state equation is obtained. Secondly, an adaptive disturbance observer is designed, which can estimate the system state and disturbance information at the same time. The existence condition of the observer is given by using Lyapunov stability theory and linear matrix inequality. In addition, the pole placement method is used to improve the observer dynamic performance, and the exponential attenuation factor is introduced to improve the convergence speed of the controller. Considering the output saturation characteristics of the actuator, a composite control strategy of weighted PD + LQR feedback and disturbance feedforward compensation is designed to suppress the influence of unknown disturbance and ensure the transient response and steady state performance of the system. Simulation results have verified the effectiveness of the proposed algorithm, which can provide configuration keeping control strategy for dual star stereo imaging.
-
Key words:
- Two-satellite formation /
- Stereo imaging /
- PD + LQR control /
- Disturbance observer
-
[1] LIN Laixing, ZHANG Xiaolin. Current status and developing trends of nanosatellites formation flying[J]. Spacecraft Eng., 2017, 26(5):65-73(林来兴, 张小琳. 纳型卫星编队飞行技术现状及发展趋势[J]. 航天器工程, 2017, 26(5):65-73) [2] LIU GuoPing, ZHANG Shijie. A survey on formation control of small satellites[J]. Proc. IEEE, 2018, 106(3):440 [3] SUN Jun, HUANG Jing, ZHANG Xianliang, et al. Dynamics and control of spacecraft formation flying in Earth orbit[J]. Mech. Eng., 2019, 41(2):117-136(孙俊, 黄静, 张宪亮, 等. 地球轨道航天器编队飞行动力学与控制研究综述[J]. 力学与实践, 2019, 41(2):117-136) [4] SAPTARSHI Bandyopadhyay, GIRI P S, REBECCA Foust, et al. A review of impending small satellite formation flying missions[C]//53rd AIAA Aerospace Sciences Meeting. Kissimmee:AIAA, 2015:1-17 [5] ZHANG Renwei. Dynamics and Control of Satellite Orbit Attitude[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 1998(章仁为. 卫星轨道姿态动力学与控制[M]. 北京:北京航空航天大学出版社, 1998) [6] LI Liang, WANG Hong, LIU Liangyu, et al. Development of micro-satellite constellation and formation technologies[J]. Space Elect. Technol., 2017, 14(1):13-14(李亮, 王洪, 刘良玉, 等. 微小卫星星座与编队技术发展[J]. 空间电子技术, 2017, 14(1):13-14) [7] KE Z, ZHENQI H, MEIBO L. Study on maintaining formations during satellite formation flying based on SDRE and LQR[J]. Open Phys., 2017, 15(1):394-399 [8] WANG Yuedong. Research on Two-satellite Formation Control Based on Lyapunov Function[D]. Taiyuan:North University of China, 2017(王月东. 基于李雅普诺夫函数的双星编队控制研究[D]. 太原:中北大学, 2017) [9] XING Jianjun, YU Yang, WANG Yi, et al. Robust control of low earth orbit satellites formation based on improved linear quadratic regulator[J]. J. Natl. Defense Univ. Sci. Technol., 2016, 38(3):100-106(杏建军, 于洋, 王祎, 等. 基于改进线性二次型调节器的近地轨道编队卫星鲁棒控制[J]. 国防科技大学学报, 2016, 38(3):100-106) [10] LEE D. Nonlinear disturbance observer-based robust control for spacecraft formation flying[J]. Aerosp. Sci. Technol., 2018, 76:1-9 [11] WANG Youliang, ZHENG Jianhua, LI Mingtao. Analytical formation keeping control strategy for micro-satellites[J]. Space Sci., 2018, 38(6):925-933(王有亮, 郑建华, 李明涛. 微小卫星编队飞行解析构型维持控制方法[J]. 空间科学学报, 2018, 38(6):925-933) [12] STARIN S R, YEDAVALLI R K, SPARKS A G. Design of a LQR controller of reduced inputs for multiple spacecraft formation flying[C]//American Control Conference. Arlington:IEEE, 2001:1327-1332 [13] CUI Wenhao. Research on the Satellite Formation Reconfiguration and Keeping under J2 Perturbation[D]. Harbin:Harbin Engineering University, 2019 [14] LEE D. Nonlinear disturbance observer-based robust control for spacecraft formation flying[J]. Aerosp. Sci. Technol., 2018, 76:82-90 [15] YAO Junyu. Finite-time Attitude Control for Tethered Satellite System in Deep Space[D]. Harbin:Harbin Institute of Technology, 2016 [16] HU Q L, NIU G L, WANG C L. Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation[J]. Aerosp. Sci. Technol., 2018, 75:245-253 [17] SHI K K, LIU C, BIGGS J D, et al. Observer-based control for spacecraft electromagnetic docking[J]. Aerosp. Sci. Technol., 2020, 99:105759 [18] ZHANG Ke, COCQUEMPOT Vincent, JIANG Bin. Adjustable parameter-based multi-objective fault estimation observer design for Continuous-Time/Discrete-Time dynamic systems[J]. Int. J. Control Automat. Syst., 2017, 15(3):1077-1088 [19] ZHANG Siying, GAO Liqun. Modern Control Theory[M]. Beijing:Tsinghua University Press, 2017 [20] MARCELO Dias Pedroso, CLAUDINOR Bitencourt Nascimento, ANGELO Marcelo Tusset, et al. A hyperbolic tangent adaptive PID+ LQR control applied to a step-down converter using poles placement design implemented in fpga[J]. Math. Probl. Eng., 2013, 2013(13):1 -
-
计量
- 文章访问数: 472
- HTML全文浏览量: 108
- PDF下载量: 20
-
被引次数:
0(来源:Crossref)
0(来源:其他)