留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临近空间大气化学过程快速建模技术初探

张思聪 成巍 王承志 李汇军

张思聪, 成巍, 王承志, 李汇军. 临近空间大气化学过程快速建模技术初探[J]. 空间科学学报, 2022, 42(1): 91-102. doi: 10.11728/cjss2022.01.201019094
引用本文: 张思聪, 成巍, 王承志, 李汇军. 临近空间大气化学过程快速建模技术初探[J]. 空间科学学报, 2022, 42(1): 91-102. doi: 10.11728/cjss2022.01.201019094
ZHANG Sicong, CHENG Wei, WANG Chengzhi, LI Huijun. Computer-aided Chemical Kinetic Modeling in Near Space (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 91-102.  DOI: 10.11728/cjss2022.01.201019094
Citation: ZHANG Sicong, CHENG Wei, WANG Chengzhi, LI Huijun. Computer-aided Chemical Kinetic Modeling in Near Space (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 91-102.  DOI: 10.11728/cjss2022.01.201019094

临近空间大气化学过程快速建模技术初探

doi: 10.11728/cjss2022.01.201019094
基金项目: 国家自然科学基金项目(41775039)和科技部重大自然灾害监测预警与防范重点专项项目(2018 YFC1506201)共同资助
详细信息
    作者简介:

    张思聪:E-mail: zscnuaa@163.com

    通讯作者:

    李汇军,E-mail: hjli@nuaa.edu.cn

  • 中图分类号: P351

Computer-aided Chemical Kinetic Modeling in Near Space

  • 摘要:

    围绕临近空间大气化学过程数值模拟计算问题,以平流层大气4个典型光化学系统为例,运用化学动理学预处理(KPP)工具,对不同复杂度的光化学反应质量平衡方程体系进行预处理,快速建立各系统化学动理学方程组的代数表示;针对模型中的大刚性ODE方程组,选取6种不同的数值计算方案(rodas,ros3,ros4,rosenbrock,sdirk,seulex) , 实现ODE方程组的离散表示,并自动生成所需计算代码。在此基础上,开展平流层光化学过程数值模拟试验,重点考察了:各数值计算方案的计算效率和计算稳定性;各系统主要化学成分随着时间的演化规律;光化学系统复杂度对各模型主要成分变化的影响。模拟结果显示:KPP工具能有效应对临近空间大气化学反应系统复杂度的增长,缩短大气化学模型建模与检验周期,为临近空间大气化学过程研究提供有效技术支撑。

     

  • 图  1  KPP工作流程

    Figure  1.  KPP workflow flow chart

    图  2  Chapman Ⅰ模型对比结果(rosenbrock求解器)

    Figure  2.  Comparison of Chapman Ⅰ model (rosenbrock)

    图  3  Straro Ⅰ模型各成分体积分数变化曲线(rosenbrock求解器)

    Figure  3.  Volume fraction variation curve of each component in Straro Ⅰ model

    图  4  Straro模型对比结果(rosenbrock求解器)

    Figure  4.  Comparison of Strato model(rosenbrock)

    图  5  模型主要成分数密度与上海站实测浓度值对比(rosenbrock求解器)

    Figure  5.  Comparison between the number density of major component in model and the measured concentration values in Shanghai station

    表  1  平流层中的单分子、双分子和三分子光化学反应

    Table  1.   Single, bimolecular and trimolecular chemical reactions in the stratosphere

    反应方程式反应速率
    1O3+hv = O+O26.120×10–4 J
    2O3+O = 2O28.0×10–12 e(–2060/T)
    3H + OH +N2 = H2O + N21.38×10–24×(1/T)2.6
    下载: 导出CSV

    表  2  Chapman 模型的化学反应方程式

    Table  2.   Chemical reaction equation of Chapman model

    反应方程式反应速率
    O2+hv = 2O 2.643×10–10 J 3
    O2+O = O3 8.018×10–17
    O3+hv = O+O2 6.120×10–4 J
    O3+O = 2O2 1.576×10–15
    NO+O3 = NO2+O2 6.062×10–15
    NO2+O = NO+O2 1.069×10–11
    下载: 导出CSV

    表  3  Chapman 模型中各成分初始体积分数

    Table  3.   Initial volume fraction of each component in Chapman model

    OO2O3NONO2
    8.159×10–90.2096.560×10–61.075×10–82.759×10–9
    下载: 导出CSV

    表  4  Chapman 模型的化学反应方程式

    Table  4.   Chemical reaction equation of Chapman model

    反应方程式反应速率
    1O2+hv=2O2.643×10–10 J 3
    2O2+O=O38.018×10–17
    3O3+hv=O+O26.120×10–4 J
    4O3+O=2O21.576×10–15
    5NO+O3=NO2+O26.062×10–15
    6NO2+O=NO+O21.069×10–11
    7O3+hv=O(1D)+O21.070×10–3 J 2
    8O(1D)+M=O+M7.110×10–11
    9O(1D)+O3=2O21.200×10–10
    10NO2+hv=NO+O1.289×10–2 J
    下载: 导出CSV

    表  5  各求解器计算Chapman模型效率(单位 s)

    Table  5.   Each solver calculates the efficiency of the Chapman model (Unit s)

    ros3rosenbrockros4sdirkseulexrodas
    ChapmanⅠ模型0.0290.0270.0370.030.0250.025
    ChapmanⅡ模型0.030.0320.0290.030.0270.023
    下载: 导出CSV

    表  6  各求解器计算Chapman模型误差值

    Table  6.   Each solver calculates the error value of the Chapman model

    ros3rosenbrockros4sdirkseulexrodas
    ChapmanⅠ模型(×10–136.1953.4813.8463.07514.1782.996
    ChapmanⅡ模型(×10–134.7122.9183.5592.68011.9942.586
    下载: 导出CSV

    表  7  各求解器计算Strato模型效率(单位 s)

    Table  7.   Each solver calculates the efficiency of the Strato model (Unit s)

    ros3rosenbrockros4sdirkseulexrodas
    StratoⅠ模型0.0880.0810.0860.0850.0850.091
    StratoⅡ模型0.1000.1050.0990.0940.1050.108
    下载: 导出CSV

    表  8  各求解器计算Strato模型误差值

    Table  8.   Each solver calculates the error value of the Strato model

    ros3rosenbrockros4sdirkseulexrodas
    StratoⅠ模型(×10–118.98098.99858.98068.98038.99948.9797
    StratoⅡ模型(×10–13)1.65253.44381.64321.60333.53381.5614
    下载: 导出CSV
  • [1] BRASSEUR G P, SOLOMON SUSAN. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere[M]. Dordrecht: Springer Netherlands, 2005: 25-32
    [2] REES M H. Physics and Chemistry of the Upper Atmosphere[M]. Cambridge: Cambridge University Press, 1989: 49-64
    [3] 马鹏里, 张强, 杨兴国, 等. 大气化学研究进展—臭氧、气溶胶研究综述[J]. 干旱气象, 2003(4): 66-70

    MA Pengli, ZHANG Qiang, YANG Xingguo, et al. Research progress of atmospheric chemistry- review of ozone and aerosol research[J]. Dry Meteorology, 2003(4): 66-70
    [4] 王明星. 大气化学[M]. 北京: 气象出版社, 1999: 10-13

    WANG Mingxing. Atmospheric Chemistry[M]. Beijng: Meteorological Press, 1999: 10-13
    [5] 肖存英. 临近空间大气动力学特性研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2009

    XIAO Cunying. Study on Atmospheric Dynamics in Near Space[D]. Beijing: Graduate School of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2009
    [6] 王振亚, 李海洋, 周士康. 平流层中臭氧耗减化学研究进展[J]. 科学通报, 2001, 46(8): 619-625 doi: 10.3321/j.issn:0023-074X.2001.08.002

    WANG Zhenya, LI Haiyang, ZHOU Shikang. Advances in ozone depletion chemistry in the stratosphere[J]. Science Bulletin, 2001, 46(8): 619-625 doi: 10.3321/j.issn:0023-074X.2001.08.002
    [7] 徐晓斌, 葛宝珠, 林伟立. 臭氧生成效率(OPE)相关研究进展[J]. 地球科学进展, 2009, 24(008): 845-853

    XU Xiaobin, GE Baozhu, LIN Weili. Progress in the research of Ozone Production Efficiency (OPE)[J]. Advances in Geoscience, 2009, 24(008): 845-853
    [8] 贾龙, 葛茂发, 徐永福, 等. 大气臭氧化学研究进展[J]. 化学进展, 2006, 018(011): 1565-1574

    JIA Long, GE Maofa, XU Yongfu, et al. Advances in atmospheric ozone chemistry[J]. Chemical Progress, 2006, 018(011): 1565-1574
    [9] 刘春红, 杨培才, 曾庆存. 平流层臭氧均相光化学系统的非线性特性——对Clx和NOx排放强度变化的响应[J]. 中国科学(D辑:地球科学), 1997(05): 475-480

    LIU Chunhong, YANG Peicai, ZENG Qingcun. Nonlinear characteristics of stratospheric ozone homogeneous photochemical system-response to Clx and NOx emission intensity changes[J]. hinese Science (part D:Geoscience), 1997(05): 475-480
    [10] 范志强. 临近空间大气环境探测资料分析研究[D]. 长沙: 国防科技大学, 2018

    FAN Zhiqiang. Analysis and Study of Atmospheric Environment Detection Data in Near Space[D]. Changsha: University of National Defense Science and Technology, 2018
    [11] CHAPMAN S A. Theory of upper atmospheric ozone[J]. Memoirs of The Royal Meteorological Society, 1930, 3: 103-125
    [12] BRASSEUR G P, JACOB D J. Modeling of Atmospheric Chemistry[M]. Cambridge : Cambridge University Press, 2017: 34-45
    [13] DESMOND J H. Modeling and Simulating Chemical Reactions[M]. New York: Society for Industrial and Applied Mathematics, 2008
    [14] NICHOLAS J H. The Princeton Companion to Applied Mathmatics[M]. Princeton: Princeton University Press, 2015
    [15] 田文寿, 张敏, 舒建川. 中层大气模式的应用及发展前景[J]. 地球科学进展, 2009, 24(03): 252-261 doi: 10.3321/j.issn:1001-8166.2009.03.004

    TIAN Wenshou, ZHANG Min, SHU Jianchuan. Application and development prospect of mesosphere model[J]. Advances in Geoscience, 2009, 24(03): 252-261 doi: 10.3321/j.issn:1001-8166.2009.03.004
    [16] 毕云. 平流层水汽与甲烷的分布和变化及其气候效应的研究[D]. 合肥: 中国科学技术大学, 2009

    BI Yun. Study on the Distribution and Variation of Stratospheric Water Vapor and Methane and Their Climatic Effects[D]. Hefei: University of Science and Technology of China, 2009
    [17] 潘晨. 利用WACCM4模式对平流层大气组成的模拟研究[D]. 南京: 南京信息工程大学, 2013

    PAN Chen. Simulation of Stratospheric Atmospheric Composition Using WACCM4 Model[D]. Nanjing: Nanjing University of Information Engineering, 2013
    [18] 潘晨, 朱彬, 施春华, 等. SD-WACCM模式对平流层化学组分的模拟研究[J]. 气象科学, 2015, 35(01): 9-16

    PAN Chen, ZHU Bin, SHI Chunhua, et al. Simulation study of stratospheric chemical composition by SD-WACCM model[J]. Meteorological Sciences, 2015, 35(01): 9-16
    [19] 刘宁微, 马建中, 伍湘君, 等. 两个模式对平流层温度模拟的比较与分析[J]. 大气科学学报, 2017, 40(06): 721-728

    LIU Ningwei, MA Jianzhong, WU Xiangjun, et al. Comparison and analysis of two models for stratospheric temperature simulation[J]. Journal of atmospheric science, 2017, 40(06): 721-728
    [20] 徐寄遥, 马瑞平, SMITH A K. 光化-动力耦合重力波模式及其应用——Ⅰ. 模式的建立[J]. 中国科学(A辑), 2001(S1): 142-148

    XU Jiyao, MA Ruiping, SMITH A K. Photochemical-dynamic coupled gravity wave model and its application- I. The establishment of the model[J]. Chinese Science (Series A), 2001(S1): 142-148
    [21] 徐寄遥, 马瑞平, SMITH A K. 光化-动力耦合重力波模式及其应用——Ⅱ. 稳定传播的重力波对中层顶区化学成分分布的影响[J]. 中国科学(A辑), 2001(S1): 149-156

    XU Jiyao, MA Ruiping, SMITH A K. Photochemical-dynamic coupled gravity wave model and its application- Ⅱ. Effect of stably propagating gravity waves on chemical composition distribution in the mesopause region[J]. Chinese Science (Series A), 2001(S1): 149-156
    [22] 王体健, 李宗恺. 不同方案求解非线性化学动力学方程组的比较[J]. 应用气象学报, 1996, 7(04): 466-472

    WANG Tijian, LI Zongkai. Comparison of different schemes for solving nonlinear chemical kinetic equations[J]. Journal of Applied Meteorology, 1996, 7(04): 466-472
    [23] 王体健, 孙照渤. 一种非线性大气化学动力学方程组的新算法[J]. 南京气象学院学报, 1998, 021(003): 398-404

    WANG Shijian, SUN Zhaobo. A new algorithm for nonlinear atmospheric chemical kinetic equations[J]. Journal of Nanjing Institute of Meteorology, 1998, 021(003): 398-404
    [24] 张欣, 王体健, 沈凡卉, 等. 非线性大气化学动力学方程组数值解法的比较[J]. 气象科学, 2010, 30(04): 427-437 doi: 10.3969/j.issn.1009-0827.2010.04.001

    ZHANG Xin, WANG Tijian, SHEN Fanhui, et al. Comparison of numerical solutions of nonlinear atmospheric chemical kinetic equations[J]. Meteorological Sciences, 2010, 30(04): 427-437 doi: 10.3969/j.issn.1009-0827.2010.04.001
    [25] 芮守娟. 关中地区臭氧浓度变化特征及其形成过程的数值模拟[D]. 西安: 长安大学, 2019

    RUI Shoujuan. Numerical Simulation of Ozone Concentration Change and Its Formation Process in Guanzhong Area[D]. Xian: Chang'an University, 2019
    [26] DAMIAN-IORDACHE V. KPP-Chemistry Simulation Development Environment[D]. Iowa: The University of Iowa, 1996
    [27] DAMIAN V, SANDU A, DAMIAN M, et al. The kinetic preprocessor KPP-a software environment for solving chemical kinetics[J]. Computers & Chemical Engineering, 2002, 26(11): 1567-1579
    [28] SANDU A, VERWER J G, BLOM J G, et al. Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers[J]. Atmospheric Environment, 1997, 31(20): 3459-3472 doi: 10.1016/S1352-2310(97)83212-8
    [29] 楼晟荣. 大气环境中OH自由基反应活性的检测技术[D]. 上海: 上海交通大学, 2012

    LOU Shengrong. Detection of Reaction Activity of OH Free Radicals in Atmospheric Environment[D]. Shanghai: Shanghai Jiaotong University, 2012
    [30] 林秀, 王智民, 韩基新. 大气中臭氧的存在形式及环保对策[J]. 黑龙江大学自然科学学报, 2003(03): 118-122 doi: 10.3969/j.issn.1001-7011.2003.03.029

    LIN Xiu, WANG Zhimin, HAN Jixin. The existing forms of ozone in the atmosphere and environmental protection countermeasures[J]. Journal of Natural Science of Heilongjiang University, 2003(03): 118-122 doi: 10.3969/j.issn.1001-7011.2003.03.029
    [31] HWANG D Y, MEBEL A M. Ab initio study on the reaction mechanism of ozone with the chlorine atom[J]. Journal of Chemical Physics, 1998, 109(24): 10847-10852 doi: 10.1063/1.477781
    [32] WOFSY S C, MCELROY M B, YUNG Y L. The chemistry of atmospheric bromine[J]. Geophysical Research Letters, 2013, 2(6): 215-218
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  129
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 录用日期:  2021-06-01
  • 修回日期:  2021-10-04
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回