| [1] |
魏奉思. “数字空间”是空间科技战略新高地[J]. 河南科技, 2016(19): 7WEI Fengsi. "Digital space" is a new strategic in space science and technology[J]. Henan Science and Technology 2016(19): 7
|
| [2] |
HAKAMADA K, AKASOFU S I. Simulation of three-dimensional solar wind disturbances and resulting geomagnetic storms[J]. Space Science Reviews, 1982, 31(1): 3-70 doi: 10.1007/BF00349000
|
| [3] |
TOTH G, SOKOLOV I V, GOMBOSI T I, et al. Space weather modeling framework: a new tool for the space science community[J]. Journal of Geophysical Research: Space Physics, 2005, 110: A12226 doi: 10.1029/2005JA011126
|
| [4] |
SMITH Z K, DETMAN T R, SUN W, et al. Modeling the arrival at earth of the interplanetary shock following the 12 may 1997 solar event using HAFV2 and 3-d MHD HHMS models[J]. Space Weather, 2007, 6: S05006
|
| [5] |
LINKER J A, RILEY P, MIKIC Z, et al. CORHEL MHD Modeling in Support of Solar Dynamics Observatory[M]. Miami: American Astronomical Society, 2010
|
| [6] |
FENG X S, YANG L P, XIANG C Q, et al. Three-dimensional solar wind modeling from the sun to earth by a SIP-CESE MHD model with a six-component grid[J]. Astrophysical Journal, 2010, 723(1): 300 doi: 10.1088/0004-637X/723/1/300
|
| [7] |
冯学尚, WU S T, 范全林, 等. 一类TVD型组合差分方法及其在磁流体数值计算中的应用[J]. 空间科学学报, 2002, 22(4): 300-308 doi: 10.3969/j.issn.0254-6124.2002.04.002FENG Xueshang, WU S T, FAN Quanlin, et al. A class of TVD type combined numerical scheme for MHD equations and its application to MHD numerical simulation[J]. Chinese Journal of Space Science, 2002, 22(4): 300-308 doi: 10.3969/j.issn.0254-6124.2002.04.002
|
| [8] |
FENG X S, WU S T, WEI F S, et al. A class of TVD type combined numerical scheme for MHD equations with a survey about numerical methods in solar wind simulations[J]. Space Science Reviews, 2003, 107(1/2): 43-53
|
| [9] |
冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学:地球科学, 2011, 41(001): 1-28 doi: 10.1360/zd-2011-41-1-1FENG Xueshang, XIANG Changqing, ZHONG Dingkun. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms[J]. Scientia Sinica Terrae, 2011, 41(001): 1-28 doi: 10.1360/zd-2011-41-1-1
|
| [10] |
SHEN F, FENG X S, WU S T, et al. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event[J]. Journal of Geophysical Research: Space Physics, 2007, 112: A06109
|
| [11] |
SHEN Fang, FENG XueShang, SONG WenBin. An asynchronous and parallel time-marching method: Application to three-dimensional MHD simulation of solar wind[J]. Scientia Sinica Technologica, 2009, 52(10): 2895-2902
|
| [12] |
SHEN F, FENG X S, WANG Y, et al. Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model[J]. Journal of Geophysical Research: Space Physics, 2011, 116: A09103
|
| [13] |
SHEN F, FENG X S, WU S T, et al. Three-dimensional MHD simulation of the evolution of the April 2000 CME event and its induced shocks using a magnetized plasma blob model[J]. Journal of Geophysical Research (Space Physics), 2011, 116: A04102
|
| [14] |
SHEN F, WU S T, FENG X, et al. Acceleration and deceleration of coronal mass ejections during propagation and interaction[J]. Journal of Geophysical Research: Space Physics, 2012, 117: A11101
|
| [15] |
SHEN Fang, SHEN Chenlong, WANG Yuming, et al. Could the collision of CMEs in the heliosphere be super elastic. Validation through three dimensional simulations[J]. Geophysical Research Letters, 2013, 40: 1457-1461 doi: 10.1002/grl.50336
|
| [16] |
SHEN Fang, SHEN Chenlong, ZHANG Jie, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth: data-constrained three-dimensional MHD simulations[J]. Journal of Geophysical Research: Space Physics, 2014, 119: 7128-7141 doi: 10.1002/2014JA020365
|
| [17] |
POWELLK G. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. Journal of Computational Physics, 1999, 154(2): 284-309 doi: 10.1006/jcph.1999.6299
|
| [18] |
JANHUNEN P. A positive conservative method for magnetohydrodynamics based on HLL and Roe methods[J]. Journal of Computational Physics, 2000, 160: 649-661 doi: 10.1006/jcph.2000.6479
|
| [19] |
YEE H C, SJOEGREEN B. Efficient low dissipative high order schemes for multiscale MHD flows, II: minimization of ∇· B numerical error[J]. Journal of Scientific Computing, 2006, 29: 115-164 doi: 10.1007/s10915-005-9004-5
|
| [20] |
DEDNER A, KEMM F, Kröner D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. Journal of Computational Physics, 2002, 175: 645-673 doi: 10.1006/jcph.2001.6961
|
| [21] |
TÓTH G. The ∇⋅B = 0 Constraint in shock-capturing magnetohydrodynamics codes[J]. Journal of Computational Physics, 2000, 161: 605-652
|
| [22] |
EVANS C R, HAWLEY J F. Simulation of magnetohydrodynamic flows: a constrained transport method[J]. Astrophysical Journal, 2007, 332(2): 659-677
|
| [23] |
DAI W, WOODWARD P R. A simple finite difference scheme for multidimensional magnetohydrodynamical equation[J]. Journal of Computational Physics, 1998, 142: 331-369 doi: 10.1006/jcph.1998.5944
|
| [24] |
HOPKINS P F. A constrained-gradient method to control divergence errors in numerical MHD[J]. Monthly Notices of the Royal Astronomical Society, 2016, 462: 576-587
|
| [25] |
SERNA S. A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations[J]. Journal of Computational Physics, 2009, 228(11): 4232-4247 doi: 10.1016/j.jcp.2009.03.001
|
| [26] |
FENG X S, LIU X J, XIANG C Q, et al. A new MHD model with a rotated-hybrid scheme and solenoidality-preserving approach[J]. The Astrophysical Journal, 2019, 871(2): 226 doi: 10.3847/1538-4357/aafacf
|
| [27] |
刘元昕, 纪珍, 冯学尚, 等. 电阻磁流体力学模拟的CESE方法[J]. 空间科学学报, 2010, 30(003): 211-220LIU Yuanxin, JI Zhen, FENG Xueshang, et al. CESE method for resistive magnetohynamics[J]. Chinese Journal of Space Science, 2010, 30(003): 211-220
|
| [28] |
ZHANG M, FENG X S. A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation[J]. Frontiers in Astronomy and Space Sciences, 2016, 3
|
| [29] |
YANG Z C, SHEN F, YANG Y, et al. Three-dimensional MHD simulation of interplanetary solar wind[J]. Chinese Journal of Geophysics, 2018, 20: 2127
|
| [30] |
NAKAMIZO A, TANAKA T, KUBO Y, et al. Development of the 3‐D MHD model of the solar corona‐solar wind combining system[J]. Journal of Geophysical Research Space Physics, 2009, 114(A7): 109
|
| [31] |
FENG X S, ZHANG S H, XIANG C Q, et al. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid[J]. Astrophysical Journal, 2011, 734(1): 50 doi: 10.1088/0004-637X/734/1/50
|
| [32] |
ZHOU Y F, FENG X S, WU S T, et al. Using a 3‐D spherical plasmoid to interpret the Sun‐to‐Earth propagation of the 4 November 1997 coronal mass ejection event[J]. Journal of Geophysical Research Atmospheres, 2012, 117(A1): 102
|
| [33] |
杨子才, 沈芳, 杨易, 冯学尚. WSA太阳风经验模型及其应用[J]. 空间科学学报, 2018, 38(03): 285-285YANG Zicai, SHEN Fang, YANG Yi, et al. Analysis of present research on the WSA solar wind model[J]. Chinese Journal of Space Science, 2018, 38(03): 285-285
|
| [34] |
杨子才. 行星际背景太阳风的三维磁流体力学数值模拟[D]. 北京: 中国科学院研究生院. 2018YANG Zicai. Numerical Simulation of Three-Dimensional Magnetorheological Simulation of Solar Wind in Interplanetary Background[D]. Beijing: The University of Chinese Academy of Sciences, 2018
|
| [35] |
杨利平. 背景太阳风的三维数值模拟研究[D]. 北京: 中国科学院研究生院, 2011YANG Liping. Background Study on 3D Numerical Simulation of Solar Wind[D]. Beijing: The University of Chinese Academy of Sciences, 2011
|