留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

日侧外磁层ULF波调制EMIC波的MMS观测

廖泽冬 刘斯 高中磊 何茜 李彤 商雄军

廖泽冬, 刘斯, 高中磊, 何茜, 李彤, 商雄军. 日侧外磁层ULF波调制EMIC波的MMS观测[J]. 空间科学学报, 2022, 42(2): 206-215. doi: 10.11728/cjss2022.02.210204018
引用本文: 廖泽冬, 刘斯, 高中磊, 何茜, 李彤, 商雄军. 日侧外磁层ULF波调制EMIC波的MMS观测[J]. 空间科学学报, 2022, 42(2): 206-215. doi: 10.11728/cjss2022.02.210204018
LIAO Zedong, LIU Si, GAO Zhonglei, HE Qian, LI Tong, SHANG Xiongjun. Magnetospheric Multiscale Observation of Electromagnetic Ion Cyclotron Wave Modulated by ULF Wave in Outer Magnetosphere (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 206-215. DOI: 10.11728/cjss2022.02.210204018
Citation: LIAO Zedong, LIU Si, GAO Zhonglei, HE Qian, LI Tong, SHANG Xiongjun. Magnetospheric Multiscale Observation of Electromagnetic Ion Cyclotron Wave Modulated by ULF Wave in Outer Magnetosphere (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 206-215. DOI: 10.11728/cjss2022.02.210204018

日侧外磁层ULF波调制EMIC波的MMS观测

doi: 10.11728/cjss2022.02.210204018
详细信息
    作者简介:

    廖泽冬:E-mail:zedliao@hotmail.com

  • 中图分类号: P354

Magnetospheric Multiscale Observation of Electromagnetic Ion Cyclotron Wave Modulated by ULF Wave in Outer Magnetosphere

  • 摘要: 磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2ReL 为 7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到。频率分析显示,ULF波的周期、质子各向异性周期和EMIC波包的周期非常接近。MMS-4卫星在约1 h后经过附近空间区域,研究发现随着ULF波的幅度减弱,EMIC波包的准周期性也逐渐减弱。研究结果为ULF波在日侧外磁层调制质子各向异性从而产生周期性EMIC波包提供了完整的观测证据链。同时,观测结果进一步证明,这种ULF波调制的EMIC波包能够在大于2Re的空间尺度内发生,且能够持续存在于几个小时以上的时间尺度。

     

  • 图  1  (a) 2017年2月23日的SYM-H指数和AE指数,灰色阴影区域为MMS1卫星观测时间,粉色阴影区域为MMS4卫星观测时间。(b) GSE坐标中的磁场波形。(c) 2017年2月23日11:20-12:50 UT的波观测。(d)~(f)HPCA观测的能量质子(9 keV,19 keV和32 keV)的投掷角分布

    Figure  1.  (a) SYM-H index and AE index on 23 February 2017. The gray shaded area is the observation time of the MMS1 satellite, and the pink shaded area is the observation time of the MMS4 satellite. (b) Magnetic field waveforms in GSE coordinates. (c) Wave observation from 11:20 to 12:50 UT on 23 February 2017. (d)~(f) The pitch angle distributions of energetic protons (9 keV, 19 keV and 32 keV) measured by HPCA

    图  2  (a)磁场波功率谱密度,两条红色实线分别为H+ 回旋频率和He+回旋频率。(b)通过SVD方法得到的波传播角。(c)通过SVD方法得出的波椭圆率

    Figure  2.  (a) Magnetic field wave power spectral density. The two solid red lines are H+ cyclotron frequency and He+ cyclotron frequency. (b) Wave normal angle obtained by SVD method. (c) Wave ellipticity obtained by SVD method

    图  3  (a) GSE坐标系下ULF的x分量。(b) EMIC波功率谱密度,黑线为提取的EMIC波的包络线。(c) 9 keV质子投掷角分布,黑线为提取的9 keV能量质子温度各向异性的相对变化。(d) ULF波,EMIC波包和质子各向异性包络的FFT结果

    Figure  3.  (a) x component of ULF in GSE coordinate system. (b) The power spectral density of EMIC wave , and the black line is the envelope of the EMIC wave. (c) Temperature anisotropy of 9 keV energy proton, and the black line is the relative change of the temperature anisotropy of the 9 keV energy protons. (d) FFT results for the ULF wave, EMIC wave packets and the proton anisotropy envelop

    图  4  (a) GSE坐标中的磁场波形, (b)用磁通门磁强计测量的波磁场频谱密度,(c)通过SVD方法得出的波传播角,(d)通过SVD方法得出的波椭圆率,(e)利用HPCA测量的能量质子(8 keV)的投掷角分布

    Figure  4.  (a) Magnetic field waveforms in GSE coordinates. (b) The wave magnetic field spectral density measured by fluxgate magnetometer instrument. (c) Wave propagation angle obtained by SVD method. (d) Wave ellipticity obtained by SVD method. (e) The pitch angle distributions of energetic protons (8 keV) measured by HPCA

  • [1] ANDERSON B J, DENTON R E, HO G, et al. Observational test of local proton cyclotron instability in the Earth’s magnetosphere[J]. Journal of Geophysical Research, 1996, 101(A10): 21527-21543 doi: 10.1029/96JA01251
    [2] JORDANOVA V K, WELLING D T, ZAHARIA S G, et al. Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm[J]. Journal of Geophysical Research, 2012, 117(A9): A00L08
    [3] KENNEL C F, PETSCHEK H E. Limit on stably trapped particle fluxes[J]. Journal of Geophysical Research, 1966, 71(1): 1-28 doi: 10.1029/JZ071i001p00001
    [4] ZHANG J C, SAIKIN A A, KISTLER L M, et al. Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013[J]. Geophysical Research Letters, 2014, 41(12): 4101-4108 doi: 10.1002/2014GL060621
    [5] ZHOU Q H, XIAO F L, SHI J K, et al. Excitation of electromagnetic ion cyclotron waves under different geomagnetic activities: THEMIS observation and modeling[J]. Journal of Geophysical Research, 2013, 118(1): 340-349 doi: 10.1029/2012JA018325
    [6] WANG D D, YUAN Z G, YU X D, et al. Statistical characteristics of EMIC waves: Van Allen Probe observations[J]. Journal of Geophysical Research, 2015, 120(6): 4400-4408 doi: 10.1002/2015JA021089
    [7] ANDERSON B J, HAMILTON D C. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions[J]. Journal of Geophysical Research, 1993, 98(A7): 11369-11382 doi: 10.1029/93JA00605
    [8] ENGEBRETSON M J, PETERSON W K, POSCH J L, et al. Observations of two types of Pc 1-2 pulsations in the outer dayside magnetosphere[J]. Journal of Geophysical Research, 2002, 107(A12): 1451
    [9] ENGEBRETSON M J, POSCH J L, CAPMAN N S S, et al. MMS, Van Allen Probes, GOES 13, and ground-based magnetometer observations of EMIC wave events before, during, and after a modest interplanetary shock[J]. Journal of Geophysical Research, 2018, 123(10): 8331-8357
    [10] USANOVA M E, MANN I R, BORTNIK J, et al. THEMIS observations of electromagnetic ion cyclotron wave occurrence: dependence on AE, SYMH, and solar wind dynamic pressure[J]. Journal of Geophysical Research, 2012, 117(A10): A10218
    [11] USANOVA M E, MANN I R, KALE Z C, et al. Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation[J]. Journal of Geophysical Research, 2010, 115(A7): A07208
    [12] GRISON B, SANTOLÍK O, LUKAČEVIČ, et al. Occurrence of EMIC waves in the magnetosphere according to their distance to the magnetopause[J]. Geophysical Research Letters, 2021, 48(3): e2020GL090921
    [13] USANOVA M E, MANN I R. Understanding the role of EMIC waves in radiation belt and ring current dynamics: recent advances[M]//BALASIS G, DAGLIS I A, MANN I R. Waves, Particles, and Storms in Geospace: A Complex Interpla. Oxford: Oxford University Press, 2016
    [14] LIU N G, SU Z P, GAO Z L, et al. Can solar wind decompressive discontinuities suppress magnetospheric electromagnetic ion cyclotron waves associated with fresh proton injections?[J]. Geophysical Research Letters, 2020, 47(17): e2020GL090296
    [15] LIU K J, LEMONS D S, WINSKE D, et al. Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: test particle simulations[J]. Journal of Geophysical Research, 2010, 115(A4): A04204
    [16] LIU K J, WINSKE D, GARY S P, et al. Relativistic electron scattering by large amplitude electromagnetic ion cyclotron waves: the role of phase bunching and trapping[J]. Journal of Geophysical Research, 2012, 117(A6): A06218
    [17] LORENTZEN K R, MCCARTHY M P, PARKS G K, et al. Precipitation of relativistic electrons by interaction with electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research, 2000, 105(A3): 5381-5389 doi: 10.1029/1999JA000283
    [18] NI B B, CAO X, SHPRITS Y Y, et al. Hot plasma effects on the cyclotron-resonant pitch-angle scattering rates of radiation belt electrons due to EMIC waves[J]. Geophysical Research Letters, 2018, 45(1): 21-30 doi: 10.1002/2017GL076028
    [19] SUMMERS D, THORNE R M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms[J]. Journal of Geophysical Research, 2003, 108(A4): 1143 doi: 10.1029/2002JA009489
    [20] SU Z P, ZHU H, XIAO F L, et al. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons[J]. Journal of Geophysical Research, 2013, 118(6): 3188-3202 doi: 10.1002/jgra.50289
    [21] USANOVA M E, DROZDOV A, ORLOVA K, et al. Effect of EMIC waves on relativistic and ultrarelativistic electron populations: ground-based and Van Allen Probes observations[J]. Geophysical Research Letters, 2014, 41(5): 1375-1381 doi: 10.1002/2013GL059024
    [22] WANG B, SU Z P, ZHANG Y, et al. Nonlinear Landau resonant scattering of near equatorially mirroring radiation belt electrons by oblique EMIC waves[J]. Geophysical Research Letters, 2016, 43(8): 3628-3636 doi: 10.1002/2016GL068467
    [23] ZHANG X J, LI W, MA R M, et al. Direct evidence for EMIC wave scattering of relativistic electrons in space[J]. Journal of Geophysical Research, 2016, 121(7): 6620-6631 doi: 10.1002/2016JA022521
    [24] THORNE R M, HORNE R B. The contribution of ion-cyclotron waves to electron heating and SAR-arc excitation near the storm-time plasmapause[J]. Geophysical Research Letters, 1992, 19(4): 417-420 doi: 10.1029/92GL00089
    [25] YUAN Z G, XIONG Y, HUANG S Y, et al. Cold electron heating by EMIC waves in the plasmaspheric plume with observations of the Cluster satellite[J]. Geophysical Research Letters, 2014, 41(6): 1830-1837 doi: 10.1002/2014GL059241
    [26] ZHOU Q H, XIAO F L, YANG C, et al. Observation and modeling of magnetospheric cold electron heating by electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research, 2013, 118(11): 6907-6914 doi: 10.1002/2013JA019263
    [27] THORNE R M, HORNE R B. Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+ during magnetic storms[J]. Journal of Geophysical Research, 1997, 102(A7): 14155-14163 doi: 10.1029/96JA04019
    [28] ZHANG J C, KISTLER L M, MOUIKIS C G, et al. A statistical study of EMIC wave-associated He+ energization in the outer magnetosphere: Cluster/CODIF observations[J]. Journal of Geophysical Research, 2011, 116(A11): A11201
    [29] JORDANOVA V K, FARRUGIA C J, THORNE R M, et al. Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14-16, 1997, storm[J]. Journal of Geophysical Research, 2001, 106(A1): 7-22 doi: 10.1029/2000JA002008
    [30] XIAO F L, CHEN L X, HE Y H, et al. Modeling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73(1): 106-111 doi: 10.1016/j.jastp.2010.01.007
    [31] XIAO F L, YANG C, ZHOU Q H, et al. Nonstorm time scattering of ring current protons by electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research, 2012, 117(A8): A08204
    [32] LIU N G, SU Z P, GAO Z L, et al. Magnetospheric chorus, exohiss, and magnetosonic emissions simultaneously modulated by fundamental toroidal standing Alfvén waves following solar wind dynamic pressure fluctuations[J]. Geophysical Research Letters, 2019, 46(4): 1900-1910 doi: 10.1029/2018GL081500
    [33] BARFIELD J N, MCPHERRON R L. Investigation of interaction between Pc 1 and 2 and Pc 5 micropulsations at the synchronous orbit during magnetic storms[J]. Journal of Geophysical Research, 1972, 77(25): 4707-4719 doi: 10.1029/JA077i025p04707
    [34] MALTZEVA N, TROITSKAYA V A, SCHEPETNOV R, et al. PC 4–PC 1 magnetic pulsations at synchronous orbit and their relation to pulsations on the ground[J]. Journal of Geophysical Research, 1982, 87(A12): 10439-10448 doi: 10.1029/JA087iA12p10439
    [35] PLYASOVA-BAKOUNINA T A, KANGAS J, MURSULA K, et al. Pc 1-2 and Pc 4-5 pulsations observed at a network of high-latitude stations[J]. Journal of Geophysical Research, 1996, 101(A5): 10965-10973 doi: 10.1029/95JA03770
    [36] MURSULA K, BRÄYSY T, NISKALA K, et al. Pc1 pearls revisited: Structured electromagnetic ion cyclotron waves on Polar satellite and on ground[J]. Journal of Geophysical Research, 2001, 106(A12): 29543-29553 doi: 10.1029/2000JA003044
    [37] MURSULA K, RASINKANGAS R, BÖSINGER T, et al. Nonbouncing Pc 1 wave bursts[J]. Journal of Geophysical Research, 1997, 102(A8): 17611-17624 doi: 10.1029/97JA01080
    [38] LOTO'ANIU T M, FRASER B J, WATERS C L. The modulation of electromagnetic ion cyclotron waves by Pc 5 ULF waves[J]. Annales Geophysicae, 2009, 27(1): 121-130 doi: 10.5194/angeo-27-121-2009
    [39] KAKAD A, KAKAD B, OMURA Y, et al. Modulation of electromagnetic ion cyclotron waves by Pc5 ULF waves and energetic ring current ions[J]. Journal of Geophysical Research, 2019, 124(3): 1992-2009 doi: 10.1029/2017JA024930
    [40] LIU S, XIA Z Y, CHEN L J, et al. Magnetospheric Multiscale Observation of quasiperiodic EMIC waves associated with enhanced solar wind pressure[J]. Geophysical Research Letters, 2019, 46(13): 7096-7104 doi: 10.1029/2019GL083421
    [41] BURCH J L, MOORE T E, TORBERT R B, et al. Magnetospheric multiscale overview and science objectives[J]. Space Science Reviews, 2016, 199(1/2/3/4): 5-21
    [42] TORBERT R B, RUSSELL C T, MAGNES W, et al. The FIELDS instrument suite on MMS: scientific objectives, measurements, and data products[J]. Space Science Reviews, 2016, 199(1/2/3/4): 105-135
    [43] RUSSELL C T, ANDERSON B J, BAUMJOHANN W, et al. The magnetospheric multiscale magnetometers[J]. Space Science Reviews, 2016, 199(1/2/3/4): 189-256
    [44] YOUNG D T, BURCH J L, GOMEZ R G, et al. Hot Plasma Composition Analyzer for the Magnetospheric Multiscale Mission[J]. Space Science Reviews, 2016, 199(1/2/3/4): 407-470
    [45] SANTOLÍK O, PARROT M, LEFEUVRE F. Singular value decomposition methods for wave propagation analysis[J]. Radio Science, 2003, 38(1): 1010
    [46] ALLEN R C, ZHANG J C, KISTLER L M, et al. A statistical study of EMIC waves observed by Cluster: 1. Wave properties[J]. Journal of Geophysical Research, 2015, 120(7): 5574-5592 doi: 10.1002/2015JA021333
    [47] SHEELEY B W, MOLDWIN M B, RASSOUL H K, et al. An empirical plasmasphere and trough density model: CRRES observations[J]. Journal of Geophysical Research, 2001, 106(A11): 25631-25641 doi: 10.1029/2000JA000286
    [48] CARPENTER D L, ANDERSON R R. An ISEE/Whistler model of equatorial electron density in the magnetosphere[J]. Journal of Geophysical Research, 1992, 97(A2): 1097-1108 doi: 10.1029/91JA01548
    [49] SHUE J H, SONG P, RUSSELL C T, et al. Magnetopause location under extreme solar wind conditions[J]. Journal of Geophysical Research, 1998, 103(A8): 17691-17700 doi: 10.1029/98JA01103
  • 加载中
图(4)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 录用日期:  2021-05-21
  • 修回日期:  2021-10-28
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回