留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电离层等离子体泡的磁场扰动特征与识别

李博 李磊 苟晓晨 周斌

李博, 李磊, 苟晓晨, 周斌. 电离层等离子体泡的磁场扰动特征与识别[J]. 空间科学学报, 2022, 42(2): 232-239. doi: 10.11728/cjss2022.02.210323033
引用本文: 李博, 李磊, 苟晓晨, 周斌. 电离层等离子体泡的磁场扰动特征与识别[J]. 空间科学学报, 2022, 42(2): 232-239. doi: 10.11728/cjss2022.02.210323033
LI Bo, LI Lei, GOU Xiaochen, ZHOU Bin. Magnetic Signatures and Identification of Equatorial Plasma Bubbles (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 232-239. DOI: 10.11728/cjss2022.02.210323033
Citation: LI Bo, LI Lei, GOU Xiaochen, ZHOU Bin. Magnetic Signatures and Identification of Equatorial Plasma Bubbles (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 232-239. DOI: 10.11728/cjss2022.02.210323033

电离层等离子体泡的磁场扰动特征与识别

doi: 10.11728/cjss2022.02.210323033
基金项目: 国家自然科学基金项目(41904147)和国家重点研发计划项目(2018YFC1503503)共同资助
详细信息
    作者简介:

    李磊:E-mail:lil@nssc.ac.cn

  • 中图分类号: P352

Magnetic Signatures and Identification of Equatorial Plasma Bubbles

  • 摘要: 等离子体泡是赤道区电离层常见的密度耗空结构,同时伴随着背景磁场的增强和垂直背景磁场方向上的扰动,这些扰动具有阿尔芬波的特征。本文利用Swarm卫星的标量、矢量磁场以及等离子体观测数据,考察了等离子体泡产生的磁场扰动信号特征,发现磁场强度和平均场向分量的增强均与等离子体泡密度下降有较强的负相关性,说明磁场标量和矢量(平均场向分量)数据都可以用来识别等离子体泡。由于Swarm卫星的标量磁场数据噪声明显低于矢量磁场数据,利用标量磁场数据可以提高等离子体泡的识别率,识别更多波动较小的等离子体泡。

     

  • 图  1  平均场向坐标系

    Figure  1.  Schematic diagram of the Mean-Field-Aligned coordinate system

    图  2  2015年2月5日Swarm磁场观测数据

    Figure  2.  Swarm observation data on 5 February 2015

    图  3  2015年2月5日等离子体泡。(a)高通滤波后的图2(a)磁场平均场向分量,(b)磁场平均场向分量的幅值,(c) Swarm观测的电子密度,(d)高通滤波后的电子密度

    Figure  3.  Plasma bubble on 5 February 2015. (a) High pass filtered main field aligned component in Fig.2(a), (b) amplitude of the component, (c) electron density observed by Swarm, (d) high pass filtered electron density

    图  4  2015年2月5日等离子体泡滤波后的磁场平均场分量与滤波后电子密度的相关性

    Figure  4.  Correlation between the filtered parallel field component and the filtered plasma density of the plasma bubble on 5 February 2015

    图  5  等离子体泡对应的磁场三分量和标量。(a)(b)(c)依次对应图2μ$ {\phi }{\nu } $方向,(d)为磁场强度

    Figure  5.  Three components in MFA coordinates and strength of the magnetic field corresponding to the plasma bubble on 5 February 2015. (a)(b)(c) corresponds to the μ$ {\phi }{\nu } $ components in Fig.2, (d) is magnetic field strength

    图  6  2015年2月5日等离子体泡滤波后磁场各分量之间的相关性。(a)平均场向与西向分量,(b)平均场向与径向分量,(c)平均场向与磁场强度,(d)磁场强度与等离子体密度

    Figure  6.  Correlation between the filtered components of the magnetic field in MFA coordinates of the plasma bubble on 5 February 2015. (a) Parallel and zonal component, (b) parallel and radial component, (c) parallel component and magnetic field strength, (d) magnetic field strength and plasma density

    图  7  2015年7月1日的等离子体泡。(a)滤波后的平均场向磁场分量,(b)滤波后的平均场向磁场分量的幅值,(c)滤波后的标量磁场,(d)滤波后标量磁场的幅值,(e)滤波后的等离子体密度

    Figure  7.  Plasma bubble on 1 July 2015. (a) Parallel magnetic field filtered in MFA coordinates, (b) amplitude of (a), (c) scalar magnetic field filtered, (d) amplitude of (c), (e) plasma density filtered

    图  8  2015年2月7日的等离子体泡。(a)滤波后的平均场向磁场,(b)对图(a)的结果整流,(c)滤波后的标量磁场,(d)对图(c)的结果整流,(e)滤波后的等离子体密度

    Figure  8.  Plasma bubble on 7 February 2015. (a) Parallel magnetic field component filtered in MFA coordinate, (b) rectified result of (a), (c) scalar magnetic field filtered, (d) rectified result of (c), (e) plasma density filtered

    表  1  利用两种数据识别等离子体泡的结果

    Table  1.   Results of the plasma bubble identification using two sets of data

    识别用数据识别成功识别失败事件总数
    平均场向磁场32745372
    标量磁场30963372
    下载: 导出CSV
  • [1] PARK J, NOJA M, STOLLE C, et al. The Ionospheric Bubble Index deduced from magnetic field and plasma observations onboard Swarm[J]. Earth, Planets and Space, 2013, 65(11): 1333-1344 doi: 10.5047/eps.2013.08.005
    [2] STOLLE C, LÜHR H, ROTHER M, et al. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A2): A02304
    [3] LÜHR H, ROTHER M, MAUS S, et al. The diamagnetic effect of the equatorial appleton anomaly: its characteristics and impact on geomagnetic field modeling[J]. Geophysical Research Letters, 2003, 30(17): 1906
    [4] BURKE W J, GENTILE L C, HUANG C Y, et al. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A12): A12301 doi: 10.1029/2004JA010583
    [5] LI G, NING B, LIU L, et al. Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia[J]. Annales Geophysicae, 2009, 27(1): 303-312 doi: 10.5194/angeo-27-303-2009
    [6] HUANG C M, RICHMOND A D, CHEN M Q. Theoretical effects of geomagnetic activity on low-latitude ionospheric electric fields[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A5): A05312
    [7] LÜHR H, MAUS S, ROTHER M, et al. First in-situ observation of night-time F region currents with the CHAMP satellite[J]. Geophysical Research Letters, 2002, 29(10): 1489
    [8] PALMROTH M, LAAKSO H, FEJER B G, et al. DE 2 observations of morningside and eveningside plasma density depletions in the equatorial ionosphere[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A8): 18429-18442 doi: 10.1029/1999JA005090
    [9] KELLEY M C. The Earth's Ionosphere[M]. San Diego: Academic Press, 1989
    [10] LUHR H, PARK J, XIONG C, et al. Alfven wave characteristics of equatorial plasma irregularities in the ionosphere derived from CHAMP observations[J]. Frontiers in Physics, 2014, 2: 47
    [11] FRATTER I, LÉGER J M, BERTRAND F, et al. Swarm absolute scalar magnetometers first in-orbit results[J]. Acta Astronautica, 2016, 121: 76-87 doi: 10.1016/j.actaastro.2015.12.025
    [12] FRIIS-CHRISTENSEN E, LÜHR H, HULOT G. Swarm: a constellation to study the Earth's magnetic field[J]. Earth, Planets and Space, 2006, 58(4): 351-358 doi: 10.1186/BF03351933
    [13] REGI M, CORPO A D, LAURETIS M D. The use of the empirical mode decomposition for the identification of mean field aligned reference frames[J]. Annals of Geophysics, 2017, 59(6): G0651-G0667
    [14] PARK J, LÜHR H, STOLLE C, et al. The characteristics of field-aligned currents associated with equatorial plasma bubbles as observed by the CHAMP satellite[J]. Annales Geophysicae, 2009, 27(7): 2685-2697 doi: 10.5194/angeo-27-2685-2009
    [15] 汪领, 尹凡. 利用聚类算法区分小尺度电离层行扰事件与赤道等离子体泡事件[J]. 空间科学学报, 2020, 40(6): 1014-1023 doi: 10.11728/cjss2020.06.1014

    WANG Ling, YIN Fan. Distinguish small-scale traveling ionospheric disturbances and equatorial plasma bubbles by clustering algorithm[J]. Chinese Journal of Space Science, 2020, 40(6): 1014-1023 doi: 10.11728/cjss2020.06.1014
    [16] YIN F, LÜHR H, PARK J, et al. Comprehensive analysis of the magnetic signatures of small-scale traveling ionospheric disturbances, as observed by Swarm[J]. Journal of Geophysical Research: Space Physics, 2019, 124(12): 10794-10815 doi: 10.1029/2019JA027523
    [17] KIL H, PAXTON L J. Global distribution of nighttime medium-scale traveling ionospheric disturbances seen by swarm satellites[J]. Geophysical Research Letters, 2017, 44(18): 9176-9182 doi: 10.1002/2017GL074750
    [18] MANDEA M M, KORTE M. Geomagnetic Observations and Models[M]. New York: Kiruna, 2011
    [19] MAUS S, LÜHR H, ROTHER M, et al. Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05013
    [20] OLSEN N, LÜHR H, FINLAY C C, et al. The CHAOS-4 geomagnetic field model[J]. Geophysical Journal International, 2014, 197(2): 815-827 doi: 10.1093/gji/ggu033
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  32
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 录用日期:  2021-05-28
  • 修回日期:  2021-12-31
  • 网络出版日期:  2022-04-11

目录

    /

    返回文章
    返回