留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳活动突发过程对临近空间大气影响的模拟

柳丹 杨钧烽 胡雄 肖存英 程旋

柳丹, 杨钧烽, 胡雄, 肖存英, 程旋. 太阳活动突发过程对临近空间大气影响的模拟[J]. 空间科学学报, 2023, 43(1): 101-111. doi: 10.11728/cjss2023.01.210929104
引用本文: 柳丹, 杨钧烽, 胡雄, 肖存英, 程旋. 太阳活动突发过程对临近空间大气影响的模拟[J]. 空间科学学报, 2023, 43(1): 101-111. doi: 10.11728/cjss2023.01.210929104
LIU Dan, YANG Junfeng, HU Xiong, XIAO Cunying, CHENG Xuan. Simulation on the Impact of the Sudden Process of Solar Activity on the Near Space Atmosphere (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 101-111 doi: 10.11728/cjss2023.01.210929104
Citation: LIU Dan, YANG Junfeng, HU Xiong, XIAO Cunying, CHENG Xuan. Simulation on the Impact of the Sudden Process of Solar Activity on the Near Space Atmosphere (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 101-111 doi: 10.11728/cjss2023.01.210929104

太阳活动突发过程对临近空间大气影响的模拟

doi: 10.11728/cjss2023.01.210929104
基金项目: 中国科学院战略性先导科技专项(A类)(XDA17010301),国家自然科学基金项目(42174192,91952111,11872128)和中国科学院国家空间科学中心“攀登计划”项目共同资助
详细信息
    作者简介:

    柳丹:E-mail:liudan@nssc.ac.cn

  • 中图分类号: P351

Simulation on the Impact of the Sudden Process of Solar Activity on the Near Space Atmosphere

  • 摘要: 空间天气对地球及近地空间具有重要影响,大的空间天气事件对中上层大气动力学和成分具有不同的影响。利用全大气耦合模式WACCM,针对太阳耀斑、太阳质子、地磁暴三类事件,以太阳活动平静期2015年5月10-14日的GEOS-5数据为模式背景场,通过F10.7、离子产生率、KpAp指数设置,分别模拟三类事件对临近空间大气温度、密度和臭氧的影响。结果表明耀斑事件在三类事件中对临近空间大气温度和密度的影响最为显著。平流层大气温度增加是由耀斑辐射增强引起平流层臭氧吸收紫外辐射发生的光化学反应所致,耀斑事件引起平流层和低热层温度增加约为2~3 K,低热层大气相对密度增加在6%以内;太阳质子事件及磁暴事件主要影响低热层,但太阳质子事件和磁暴事件对低热层温度扰动不大于1 K。

     

  • 图  1  WACCM模式

    Figure  1.  WACCM Model

    图  2  F10.7指数随时间的变化

    Figure  2.  F10.7 index varies with time

    图  3  KpAp指数随时间的变化

    Figure  3.  Kp and Ap index vary with time

    图  4  2015年5月12日离子产生率随气压的变化

    Figure  4.  Solar proton event ion production rates as a function of pressure on 12 May 2015

    图  5  三种事件中20°N温度改变量随时间–高度变化

    Figure  5.  Time-altitude evolution of temperature changes between the experimental simulation and the baseline simulation in 20°N of three types of events

    图  6  三种事件中40°N温度改变量随时间–高度的变化

    Figure  6.  Time-altitude evolution of temperature changes between the experimental simulation and the baseline simulation in 40°N of three types of events

    图  7  三种事件中70°N温度改变量随时间–高度的变化

    Figure  7.  Time-altitude evolution of temperature changes between the experimental simulation and the baseline simulation in 70°N of three types of events

    图  8  三种事件中20°N相对密度改变量随时间–高度的变化

    Figure  8.  Time-altitude evolution of relative density changes between the experimental simulation and the baseline simulation in 20°N of three types of events

    图  9  三种事件中40°N相对密度改变量随时间–高度的变化

    Figure  9.  Time-altitude evolution of relative density changes between the experimental simulation and the baseline simulation in 40°N of three types of events

    图  10  三种事件中70°N相对密度改变量随时间–高度的变化

    Figure  10.  Time-altitude evolution of relative density changes between the experimental simulation and the baseline simulation in 70°N of three types of events

    图  11  三种事件中20°N臭氧改变量随时间–高度变化

    Figure  11.  Time-altitude evolution of ozone changes between the experimental simulation and the baseline simulation in 20°N of three types of events

    图  12  三种事件中40°N臭氧改变量随时间–高度变化

    Figure  12.  Time-altitude evolution of ozone changes between the experimental simulation and the baseline simulation in 40°N of three types of events

    图  13  三种事件中70°N臭氧改变量随时间–高度变化

    Figure  13.  Time-altitude evolution of ozone changes between the experimental simulation and the baseline simulation in 70°N of three types of events

    图  14  太阳耀斑事件中20°N,40°N,70°N纬向风随时间–高度的变化

    Figure  14.  Time-altitude evolution of zonal wind changes between the experimental simulation and the baseline simulation in 20°N, 40°N, 70°N in solar flare event

    图  15  太阳耀斑事件中20°N,40°N,70°N经向风随时间–高度的变化

    Figure  15.  Time-altitude evolution of meridional wind changes between the experimental simulation and the baseline simulation in 20°N, 40°N,70°N in solar flare event

    表  1  离子产生率数据来源

    Table  1.   Introduction of data source of ion production rate

    YearsSource of Protons
    1963-1973IMP 1~7
    1974-1993IMP 8
    1994-2005GOES 7,8,10,11
    2006-2012GOES 11,13
    下载: 导出CSV

    表  2  输入参数设置(模拟时间: 2015年5月10-14日)

    Table  2.   Input parameter setting (Simulation time: 10 to 14 May 2015)

    组别F10.7F10.7 aKpApisnIP / (cm–3·s–1)
    第一组
    太阳耀斑事件
    190 70 1 3 150 0
    第二组
    地磁暴事件
    70 70 7 150 20 0
    第三组
    太阳质子事件
    70 70 1 3 20 随气压变化函数,采用真实事件数据输入
    第四组
    平静对照组
    70 70 1 3 20 0
     IP为 Ion Production。
    下载: 导出CSV
  • [1] LANZEROTTI L J. Space weather effects on technologies[J]. Space Weather, 2001, 125: 11-22
    [2] WOODS T N, EPARVIER F G, FONTENLA J, et al. Solar irradiance variability during the October 2003 solar storm period[J]. Geophysical Research Letters, 2004, 31(10): L10802
    [3] THIÉBLEMONT R, BEKKI S, MARCHAND M, et al. Nighttime mesospheric/lower thermospheric tropical ozone response to the 27-Day solar rotational cycle: ENVISAT-GOMOS satellite observations versus HAMMONIA idealized chemistry-climate model simulations[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8883-8896 doi: 10.1029/2017JD027789
    [4] BAG T. Impact of M-solar flare-induced solar proton event on mesospheric Na layer over Utah (41.8°N, 112°W)[J]. Journal of Geophysical Research: Space Physics, 2017, 122(8): 8808-8815 doi: 10.1002/2017JA024001
    [5] DENTON M H, KIVI R, ULICH T, et al. Northern hemisphere stratospheric ozone depletion caused by solar proton events: the role of the polar vortex[J]. Geophysical Research Letters, 2018, 45(4): 2115-2124 doi: 10.1002/2017GL075966
    [6] PETTIT J, RANDALL C E, MARSH D R, et al. Effects of the September 2005 solar flares and solar proton events on the middle atmosphere in WACCM[J]. Journal of Geophysical Research: Space Physics, 2018, 123(7): 5747-5763 doi: 10.1029/2018JA025294
    [7] GAN Q, DU J, FOMICHEV V I, et al. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979–2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002–2015) TIMED/SABER observations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(4): 4801-4818 doi: 10.1002/2016JA023564
    [8] JACKMAN C H, MCPETERS R D, LABOW G J, et al. Northern hemisphere atmospheric effects due to the July 2000 Solar Proton Event[J]. Geophysical Research Letters, 2001, 28(15): 2883-2886 doi: 10.1029/2001GL013221
    [9] JACKMAN C H, DELAND M T, LABOW G J, et al. Neutral atmospheric influences of the solar proton events in October-November 2003[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A9): A09S27
    [10] JACKMAN C H, MARSH D R, VITT F M, et al. Short- and medium-term atmospheric constituent effects of very large solar proton events[J]. Atmospheric Chemistry and Physics, 2008, 8(3): 765-785 doi: 10.5194/acp-8-765-2008
    [11] JACKMAN C H, RANDALL C E, HARVEY V L, et al. Middle atmospheric changes caused by the January and March 2012 solar proton events[J]. Atmospheric Chemistry and Physics, 2014, 14(2): 1025-1038 doi: 10.5194/acp-14-1025-2014
    [12] BARDEEN C G, MARSH D R, JACKMAN C H, et al. Impact of the January 2012 solar proton event on polar mesospheric clouds[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(15): 9165-9173 doi: 10.1002/2016JD024820
    [13] KOVÁCS T, PLANE J M C, FENG W H, et al. D-region ion-neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4)-WACCM-SIC and WACCM-rSIC[J]. Geoscientific Model Development, 2016, 9(9): 3123-3136 doi: 10.5194/gmd-9-3123-2016
    [14] LIU J, LIU H L, WANG W B, et al. First results from the ionospheric extension of WACCM-X during the deep solar minimum year of 2008[J]. Journal of Geophysical Research: Space Physics, 2018, 123(2): 1534-1553 doi: 10.1002/2017JA025010
    [15] PEDATELLA N M, CHAU J L, VIERINEN J, et al. Solar flare effects on 150 km echoes observed over jicamarca: WACCM-X simulations[J]. Geophysical Research Letters, 2019, 46(20): 10951-10958 doi: 10.1029/2019GL084790
    [16] SI Y D, LI S S, CHEN L F, et al. Validation and spatiotemporal distribution of GEOS-5–based planetary boundary layer height and relative humidity in China[J]. Advances in Atmospheric Sciences, 2018, 35(4): 479-492 doi: 10.1007/s00376-017-6275-3
    [17] VITT F M, JACKMAN C H. A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D3): 6729-6739 doi: 10.1029/95JD03386
    [18] JACKMAN C H, MARSH D R, VITT F M, et al. Long-term middle atmospheric influence of very large solar proton events[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D11): D11304 doi: 10.1029/2008JD011415
    [19] 潘晨, 朱彬, 施春华, 等. SD-WACCM模式对平流层化学组分的模拟研究[J]. 气象科学, 2015, 35(1): 9-16 doi: 10.3969/2013jms.0059

    PAN Chen, ZHU Bin, SHI Chunhua, et al. SD-WACCM modeling study on the chemical components in the stratosphere[J]. Journal of the Meteorological Sciences, 2015, 35(1): 9-16 doi: 10.3969/2013jms.0059
    [20] PECK E D, RANDALL C E, HARVEY V L, et al. Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(2): 806-822 doi: 10.1002/2014MS000387
    [21] MARSH D R, MILLS M J, KINNISON D E, et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM)[J]. Journal of Climate, 2013, 26(19): 7372-7391 doi: 10.1175/JCLI-D-12-00558.1
    [22] 刘毅, 刘传熙. 利用WACCM-3模式对平流层动力、热力场及微量化学成分季节变化的数值模拟研究[J]. 空间科学学报, 2009, 29(6): 580-590 doi: 10.11728/cjss2009.06.580

    LIU Yi, LIU Chuanxi. Simulation studies on seasonal variations of the stratospheric dynamics and trace gases using coupled chemistry-climate model WACCM-3[J]. Chinese Journal of Space Science, 2009, 29(6): 580-590 doi: 10.11728/cjss2009.06.580
    [23] SOLOMON S C, QIAN L Y. Solar extreme-ultraviolet irradiance for general circulation models[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A10): A10306 doi: 10.1029/2005JA011160
    [24] LEAN J, ROTTMAN G, HARDER J, et al. SORCE contributions to new understanding of global change and solar variability[J]. Solar Physics, 2005, 230(1/2): 27-53
    [25] 全林, 薛军琛, 胡小工, 等. 中国区域GPS单频点定位在不同类型磁暴主相期间定位性能分析[J]. 地球物理学报, 2021, 64(9): 3030-3017 doi: 10.6038/cjg2021P0331

    QUAN Lin, XUE Junchen, HU Xiaogong, et al. Performance of GPS single frequency standard point positioning in China during the main phase of different classified geomagnetic storms[J]. Chinese Journal of Geophysics, 2021, 64(9): 3030-3017 doi: 10.6038/cjg2021P0331
    [26] 张健恺. 气候变化对北半球臭氧总量变化影响的研究[D]. 兰州: 兰州大学, 2016

    ZHANG Jiankai. A Study of Climate Change Impact on Total Ozone Column over the Northern Hemisphere[D]. Lanzhou: Lanzhou University, 2016
    [27] 万凌峰. 夏季北半球平流层臭氧对太阳紫外准11年循环的响应及机制[D]. 南京: 南京信息工程大学, 2016

    WAN Lingfeng. Response and Related Mechanism of Stratospheric Ozone in the Summer Northern Hemisphere to the Quasi-11 Years Ultraviolet Cycle of the Sun[D]. Nanjing: Nanjing University of Information Science and Technology, 2016
    [28] 陈文, 黄荣辉. 准定常行星被对大气中臭氧输运的动力作用[J]. 大气科学, 1995, 19(5): 513-524 doi: 10.3878/j.issn.1006-9895.1995.05.01

    CHEN Wen, HUANG Ronghui. The dynamics of planetary wave transport on ozone in the atmosphere[J]. Scientia Atmospherica Sinica, 1995, 19(5): 513-524 doi: 10.3878/j.issn.1006-9895.1995.05.01
    [29] PIKULINA P, MIRONOVA I, ROZANOV E, et al. September 2017 solar flares effect on the middle atmosphere[J]. Remote Sensing, 2022, 14(11): 2560 doi: 10.3390/rs14112560
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  106
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 修回日期:  2022-10-11
  • 网络出版日期:  2023-02-11

目录

    /

    返回文章
    返回