留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型微焦斑X射线闭管及阴极丝电子发射差异性

李帆 曹阳 牟欢 刘亚宁 李海涛 李保权

李帆, 曹阳, 牟欢, 刘亚宁, 李海涛, 李保权. 微型微焦斑X射线闭管及阴极丝电子发射差异性[J]. 空间科学学报, 2023, 43(1): 137-143. doi: 10.11728/cjss2023.01.211124122
引用本文: 李帆, 曹阳, 牟欢, 刘亚宁, 李海涛, 李保权. 微型微焦斑X射线闭管及阴极丝电子发射差异性[J]. 空间科学学报, 2023, 43(1): 137-143. doi: 10.11728/cjss2023.01.211124122
LI Fan, CAO Yang, MOU Huan, LIU Yaning, LI Haitao, LI Baoquan. Miniature Micro-focal X-ray Closed Tube and Electron Emission Difference of Cathode Wire (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 137-143 doi: 10.11728/cjss2023.01.211124122
Citation: LI Fan, CAO Yang, MOU Huan, LIU Yaning, LI Haitao, LI Baoquan. Miniature Micro-focal X-ray Closed Tube and Electron Emission Difference of Cathode Wire (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 137-143 doi: 10.11728/cjss2023.01.211124122

微型微焦斑X射线闭管及阴极丝电子发射差异性

doi: 10.11728/cjss2023.01.211124122
基金项目: 国家重点研发计划项目(2017 YFB0503300) ,国家自然科学基金项目(41604152,U1938111)和中国科学院青年创新促进会项目(2018178)共同资助
详细信息
    作者简介:

    李帆:E-mail:lifan_24@163.com

  • 中图分类号: TL929

Miniature Micro-focal X-ray Closed Tube and Electron Emission Difference of Cathode Wire

  • 摘要: 行星岩石成分原位测量是行星探测的基本需求,X射线荧光分析是开展元素成分测量的重要技术手段。针对深空探测X射线荧光分析仪的需要,设计并研制了一款微型微焦斑X射线闭管,尺寸为Φ15 mm × 22 mm,焦斑尺寸230 μm,工作时阳极接地,阴极接浮地负高压,最大电压为–50 kV。在微型X射线闭管研制过程中,开展了螺旋型钨丝、直线型钨丝、直线型铼钨丝等常用热阴极的电子发射差异性研究,测量了各型热阴极的电子发射效率。结果显示,在200 V阳极电压下,低铼含量直线型铼钨丝电子发射效率最大为27.87 μA·W–1,是螺旋型钨丝的4倍,直线型钨丝的9倍;掺铼钨丝电子发射效率远高于纯钨型阴极丝。此外,铼钨丝还具有电子发射快、预热要求低、对真空度要求不高等特点,是深空探测X射线闭管阴极丝较理想的选择。

     

  • 图  1  X射线管一体化阴极光学结构

    Figure  1.  Integrated cathode optical structure of X-ray tube

    图  2  微型X射线管阴极热电子塑形部分

    Figure  2.  Thermoelectronic forming part of cathode of miniature X-ray tube

    图  3  阴极测试结构

    Figure  3.  Cathode test structure

    图  4  实验测试电路

    Figure  4.  Experimental test circuit

    图  5  三种阴极丝发射效率对比

    Figure  5.  Comparison of emission efficiency of three kinds of filament

    图  6  三种阴极丝实验数据

    Figure  6.  Experimental data for three kind of filaments

    图  7  两次直线型铼钨丝实验发射效率比较

    Figure  7.  Comparison of emission efficiency between two linear rhenium tungsten wire experiments

    表  1  测试阴极丝物理参数

    Table  1.   Test physical parameters of cathode wire

    序号类型钨丝直径/μm钨丝长度/mm备注
    1螺旋型钨丝304螺旋直径150 μm,螺旋圈数20圈
    2直线型钨丝254
    3直线型铼钨丝124铼含量3%
    下载: 导出CSV

    表  2  三种阴极丝的实验数据

    Table  2.   Experimental data of three kinds of filament

    螺旋型钨丝直线型钨丝直线型铼钨丝
    阴极丝
    功率/W
    电子电流
    /μA
    发射效率
    /(μA·W –1)
    阴极丝
    功率/W
    电子电流
    /μA
    发射效率
    /(μA·W –1)
    阴极丝
    功率/W
    电子电流
    /μA
    发射效率
    /(μA·W –1)
    0.250.10.390.260.10.380.081.012.02
    0.310.61.950.280.20.720.101.111.51
    0.361.23.330.300.20.670.112.521.75
    0.431.84.200.320.30.950.122.318.44
    0.502.34.640.360.61.680.132.921.50
    0.582.95.010.400.92.270.143.323.10
    0.673.65.370.441.12.490.153.623.92
    0.764.45.760.491.32.650.164.025.10
    0.885.25.880.541.52.780.174.325.66
    1.006.05.990.591.83.070.185.127.87
    1.157.36.340.641.92.970.195.227.06
    1.329.06.810.692.02.890.204.924.05
    1.459.56.550.742.02.700.215.023.43
    1.6010.66.610.792.22.780.225.122.78
    1.7811.86.630.245.422.72
    1.9611.25.720.266.324.56
    2.0211.65.750.289.333.74
    2.0911.95.71
    2.1312.15.69
    2.2112.55.67
    2.2812.05.27
    2.3212.35.29
    下载: 导出CSV
  • [1] TURKEVICH A. Chemical analysis of surfaces by use of large-angle scattering of heavy charged particles[J]. Science, 1961, 134(3480): 672-674 doi: 10.1126/science.134.3480.672
    [2] RIEDER R, WÄNKE H, ECONOMOU T, et al. Determination of the chemical composition of Martian soil and rocks: The alpha proton X ray spectrometer[J]. Journal of Geophysical Research: Planets, 1997, 102(E2): 4027-4044 doi: 10.1029/96JE03918
    [3] TURKEVICH A L, FRANZGROTE E J, PATTERSON J H. Chemical composition of the lunar surface in Mare Tranquillitatis[J]. Science, 1969, 165(3890): 277-279 doi: 10.1126/science.165.3890.277
    [4] FRANZGROTE E J, PATTERSON J H, TURKEVICH A L, et al. Chemical composition of the lunar surface in Sinus Medii[J]. Science, 1970, 167(3917): 376-379 doi: 10.1126/science.167.3917.376
    [5] PATTERSON J H, TURKEVICH A L, FRANZGROTE E J, et al. Chemical composition of the lunar surface in a terra region near the crater Tycho[J]. Science, 1970, 168(3933): 825-828 doi: 10.1126/science.168.3933.825
    [6] YODER C F, STANDISH E M. Martian precession and rotation from Viking Lander range data[J]. Journal of Geophysical Research: Planets, 1997, 102(E2): 4065-4080 doi: 10.1029/96JE03642
    [7] GOLOMBEK M P. The Mars Pathfinder mission[J]. Journal of Geophysical Research: Planets, 1997, 102(E2): 3953-3965 doi: 10.1029/96JE02805
    [8] RIEDER R, GELLERT R, BRÜCKNER J, et al. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers[J]. Journal of Geophysical Research: Planets, 2003, 108(E12): 8066
    [9] 韩淋. 机遇号火星漫游器结束任务[J]. 空间科学学报, 2019, 39(3): 272

    HAN Lin. The Mars Rover Opportunity has ended its mission[J]. Chinese Journal of Space Science, 2019, 39(3): 272
    [10] SCHMIDT M E, CAMPBELL J L, GELLERT R, et al. Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile-rich igneous source[J]. Journal of Geophysical Research: Planets, 2014, 119(1): 64-81 doi: 10.1002/2013JE004481
    [11] 赵玉芬, 刘艳, 黄碧玲, 等. 火星生命探测中一种潜在的生物标志物磷酸盐[J]. 空间科学学报, 2021, 41(1): 129-132 doi: 10.11728/cjss2021.01.129

    ZHAO Yufen, LIU Yan, HUANG Biling, et al. A potential biomarker phosphate for life exploration on Mars Biomarker for life[J]. Chinese Journal of Space Science, 2021, 41(1): 129-132 doi: 10.11728/cjss2021.01.129
    [12] 吴明烨. 嫦娥三号粒子激发X射线谱仪数据处理方法研究[D]. 北京: 中国科学院大学, 2012

    WU Mingye. Research on Data Processing Method of Chang’E-3 Particle Excitation X-ray Spectrometer[D]. Beijing: University of Chinese Academy of Sciences, 2012
    [13] 李春来, 刘建军, 左维, 等. 中国月球探测进展(2011-2020年)[J]. 空间科学学报, 2021, 41(1): 68-75 doi: 10.11728/cjss2021.01.068

    LI Chunlai, LIU Jianjun, ZUO Wei, et al. Progress of China’s Lunar Exploration (2011-2020)[J]. Chinese Journal of Space Science, 2021, 41(1): 68-75 doi: 10.11728/cjss2021.01.068
    [14] KELLIHER W C, CARLBERG I A, ELAM W T, et al. Performance of a Borehole X-ray fluorescence spectrometer for planetary exploration[C]//2008 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2008: 1-5
    [15] MARTIN P E, EHLMANN B L, THOMAS N H, et al. Studies of a lacustrine-volcanic mars analog field site with mars-2020-like instruments[J]. Earth and Space Science, 2020, 7(2): e2019EA000720
    [16] HEIRWEGH C M, ELAM W T, FLANNERY D T, et al. An empirical derivation of the X-ray optic transmission profile used in calibrating the Planetary Instrument for X-ray Lithochemistry (PIXL) for Mars 2020[J]. Powder Diffraction, 2018, 33(2): 162-165 doi: 10.1017/S0885715618000416
    [17] UCKERT K, BHARTIA R, BEEGLE L W, et al. Calibration of the SHERLOC deep ultraviolet fluorescence-Raman spectrometer on the Perseverance rover[J]. Applied Spectroscopy, 2021, 75(7): 763-773 doi: 10.1177/00037028211013368
    [18] ALLWOOD A C, WADE L A, FOOTE M C, et al. PIXL: Planetary instrument for X-ray lithochemistry[J]. Space Science Reviews, 2020, 216(8): 134 doi: 10.1007/s11214-020-00767-7
    [19] 李保权, 曹阳, 牟欢. 一种微型微焦斑X射线管的阴极光学结构: 中国, 201910813860. X[P]. 2019-12-03

    LI Baoquan, CAO Yang, MOU Huan. A cathode lens structure of miniature micro-focus X-ray tubes: CN, 201910813860. X[P]. 2019-12-03
    [20] JIANG D Y, XIAO W B, LIU D S, et al. Structural stability, electronic structures, mechanical properties and debye temperature of W-Re alloys: a first-principles study[J]. Fusion Engineering and Design, 2021, 162: 112081 doi: 10.1016/j.fusengdes.2020.112081
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  73
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 录用日期:  2022-04-15
  • 修回日期:  2022-05-06
  • 网络出版日期:  2022-11-03

目录

    /

    返回文章
    返回