留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低能量远焦距电子枪技术

吴伟 刘超 张贤国 张爱兵 孙越强

吴伟, 刘超, 张贤国, 张爱兵, 孙越强. 一种低能量远焦距电子枪技术[J]. 空间科学学报, 2023, 43(1): 144-155. doi: 10.11728/cjss2023.01.220208013
引用本文: 吴伟, 刘超, 张贤国, 张爱兵, 孙越强. 一种低能量远焦距电子枪技术[J]. 空间科学学报, 2023, 43(1): 144-155. doi: 10.11728/cjss2023.01.220208013
WU Wei, LIU Chao, ZHANG Xianguo, ZHANG Aibing, SUN Yueqiang. Research on a Low Energy Tele-focus Electron Gun (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 144-155 doi: 10.11728/cjss2023.01.220208013
Citation: WU Wei, LIU Chao, ZHANG Xianguo, ZHANG Aibing, SUN Yueqiang. Research on a Low Energy Tele-focus Electron Gun (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 144-155 doi: 10.11728/cjss2023.01.220208013

一种低能量远焦距电子枪技术

doi: 10.11728/cjss2023.01.220208013
基金项目: 国家重点研发计划项目(2020YFE0202100)和月球空间环境要素探测技术项目(E190002A01)共同资助
详细信息
    作者简介:

    刘超:E-mail:liuch@nssc.ac.cn

  • 中图分类号: V447

Research on a Low Energy Tele-focus Electron Gun

  • 摘要: 针对可移动非接触式月球表面电位探测器的电位无扰动测量单元对低能远焦电子束的需求,设计了低能远焦电子枪。以平板二极管电子枪为电子源,匹配两个静电聚焦透镜,将电子源引出的发散电子束聚焦为需要的形状,并加速至所需能量。优化电子枪的几何参数以及施加在电极上的电位,电子枪引出的电子束能量在5~500 eV内,并且具有良好的电子光路特性。电子束能量为5 eV时,初始半径r为5 mm,束腰至电子枪出口的距离p约为133 mm。随着能量增加,r逐渐减小至500 eV时的3 mm左右,p逐渐减小至105 mm。电子束经月球表面电场反射被电子收集平极接收,仿真数据和理论分析结果均表明,电子枪的工作距离为400~600 mm,平板接收的电子占发射电子比例在96%以上。电子枪结构质量仅408 g,满足探测器对电子枪的质量需求。

     

  • 图  1  可移动非接触式月球表面电位探测器技术方案

    Figure  1.  Scheme of movable non-contact lunar surface potential detector

    图  2  月球车与月球表面电位关系

    Figure  2.  Relationship between rover potential and lunar surface potential

    图  3  月表电位无扰动测量单元技术方案

    Figure  3.  Scheme of potential undisturbed measuring unit

    图  4  月表电位无扰动测量单元与月球车的电连接

    Figure  4.  Electrical connection between potential undisturbed measuring unit and rover

    图  5  利用反射电流反演电位原理

    Figure  5.  Schematic diagram of potential inversion using reflected current

    图  6  月球经典鞘层及饱和鞘层的月表电势随高度变化曲线

    Figure  6.  Variation of lunar surface potential with altitude in the classical and saturated lunar sheaths

    图  7  月球表面电位测量电子束光路(r为电子束的初始半径,p为束腰到电子枪出口的距离,H为电子枪的工作距离,θ为电子束收敛全角。蓝色箭头为理想状态下电子束的外轮廓,黑色虚线箭头为实际情况下电子束的外轮廓)

    Figure  7.  Electron optical diagram for measuring the lunar surface potential (r is initial radius of electron beam, p is distance from output electrode to beam waist, H is working length, and the θ is full angle of beam convergence. The blue arrow represents the outline of the ideal electron beam, and the black dashed arrow represents the outline of the electron beam in practice)

    图  8  反射电子的束斑半径

    Figure  8.  Beam spot radius of the reflected electrons at the plate

    图  9  收敛高斯电子束的相图(a)及电子收敛角的统计分布(b)

    Figure  9.  Phase diagram of a convergent Gaussian electron beam (a), and statistical distribution of electron convergence angles (b)

    图  10  低能远焦电子枪的设计原理

    Figure  10.  Final schematic of low energy tele-focus electron gun

    图  11  平板二极管电子枪

    Figure  11.  Diode electron extraction source

    图  12  电子枪内沿轴的电位分布以及电位梯度分布

    Figure  12.  Potential distribution and the potential gradient distribution along the axis

    图  13  热阴极发射电子的初始条件设置

    Figure  13.  Initial condition for thermal electrons

    图  14  电子束的轨迹

    Figure  14.  Trajectories of electron beams

    图  15  电子束束腰位置长度与电子枪能量的关系

    Figure  15.  Relationship between electron beam waist position and electron gun energy

    图  16  阳极与透镜的最后电极以及电子束的电流占阴极发射电流的比例(红色曲线为电子枪引出电流)

    Figure  16.  Ratio of anode, last lenses electrode and electron beam current to the total emitted current (red curve is the current drawn from the electron gun)

    图  17  电子束在电子枪出口的相图

    Figure  17.  Phase space diagram of the electron beam at the exit of the electron gun

    图  18  电子束收敛全角的半高全宽。蓝色曲线为电子枪出口处电子束在x方向的收敛角,红色曲线为电子枪出口处电子束在y方向的收敛角

    Figure  18.  Full width at half-maximum of the beam convergence angle. The blue curve is the convergence angle of the electron beam in the x direction at the exit of the electron gun, and the red curve is the convergence angle of the electron beam at the exit of the electron gun in the y direction

    图  19  电子束初始直径的半高全宽。蓝色曲线为电子枪出口处电子束在x方向的初始直径,红色曲线为电子枪出口处电子束在y方向的初始直径

    Figure  19.  Full width at half-maximum of the beam initial diameter. The blue curve is the initial diameter of the electron beam in the x direction, and the red curve is the initial diameter of the beam in the y direction

    图  20  电子束在均匀电场中的反射

    Figure  20.  Reflection of electron beam in uniform electric field

    图  21  电子收集平板收集的反射电子占发射总电子的比例

    Figure  21.  Ratio of the reflected electrons collected by the colleting plate to the total electrons emitted

    图  22  不同工作距离电子收集平板接收的反射电流占发射电流的比例

    Figure  22.  Ratio of the reflected current received by the collecting plate at different working distances to the emitted current

    表  1  各电极的电压设置(电子束能量为Ke,电压为相对于阴极电压的测量值)

    Table  1.   Voltages applied to electrode, where electron beam energy equals to Ke, and the operating voltages are referred to the cathode voltage

    ElectrodeAperture diameter /mmPotentials /V
    Cathode Ke
    A0.50
    B200.5 Ke
    C2010.25 Ke
    D200
    E300.5 Ke
    F304.4 Ke
    G30, 100
    下载: 导出CSV

    表  2  月球表面各区域的电子、离子、次级电子以及光电子电流

    Table  2.   Electron, ion, secondary electron, and photoelectron currents density in various regions of the lunar surface

    Current density/(A·m–2)DayTermNightCraterFar edge
    $j_{\rm{e}} $1×10–63.52×10–84×10–105.1×10–101.6×10–8
    $j_{\rm{i}} $3.2×10–73.52×10–84×10–101.6×10–117.5×10–9
    $j_{\rm{s}} $004×10–115×10–104×10–9
    $j_{\rm{p}} $4×10–60000
    下载: 导出CSV
  • [1] WALTON O R. Adhesion of Lunar Dust[R]. Livermore, CA: Grainflow Dynamics Inc. , 2007
    [2] ÖPIK E J, SINGER S F. Escape of gases from the Moon[J]. Journal of Geophysical Research, 1960, 65(10): 3065-3070 doi: 10.1029/JZ065i010p03065
    [3] GROBMAN W D, BLANK J L. Electrostatic potential distribution of the sunlit lunar surface[J]. Journal of Geophysical Research, 1969, 74(16): 3943-3951 doi: 10.1029/JA074i016p03943
    [4] MANKA R H. Plasma and potential at the lunar surface[M]//Photon and Particle Interactions with Surfaces in Space. Noordwijk, the Netherlands: Springer, 1973: 347-361
    [5] FREEMAN J W, IBRAHIM M. Lunar electric fields, surface potential and associated plasma sheaths[J]. The Moon, 1975, 14(1): 103-114 doi: 10.1007/BF00562976
    [6] HALEKAS J S, DELORY G T, BRAIN D A, et al. Extreme lunar surface charging during solar energetic particle events[J]. Geophysical Research Letters, 2007, 34(2): L02111
    [7] 王馨悦, 张爱兵, 荆涛, 等. 高能电子爆发与绕月卫星表面电位大幅下降的联动效应[J]. 地球物理学报, 2016, 59(10): 3533-3542 doi: 10.6038/cjg20161001

    WANG Xinyue, ZHANG Aibing, JING Tao. Synchronization of energetic electron bursting and lunar orbiter surface charging to negative kilovolts[J]. Chinese Journal of Geophysics, 2016, 59(10): 3533-3542 doi: 10.6038/cjg20161001
    [8] KONG L G, ZHANG A B, TIAN Z, et al. Mars ion and neutral particle analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration[J]. Earth and Planetary Physics, 2020, 4(4): 333-344
    [9] MANKA R H, MICHEL F C. Lunar atmosphere as a source of argon-40 and other lunar surface elements[J]. Science, 1970, 169(3942): 278-280 doi: 10.1126/science.169.3942.278
    [10] RUSSELL C T, COLEMAN P J JR, GOLDSTEIN B E. Measurements of the lunar induced magnetic moment in the geomagnetic tail - Evidence for a lunar core[C]//Lunar and Planetary Science Conference. Houston, TX: Pergamon Press, 1982: 831-836
    [11] 欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005

    OUYANG Ziyuan. Introduction to Lunar Science[M]. Beijing: China Astronautic Publishing House, 2005
    [12] 谢良海, 张爱兵, 李磊, 等. 嫦娥四号能量中性原子观测揭示太阳风与月面相互作用新特征[J]. 空间科学学报, 2022, 42(1): 11-24 doi: 10.11728/cjss2022.01.20220113

    XIE Lianghai, ZHANG Aibing, LI Lei, et al. Chang’E-4 energetic neutral atom observation reveals new features about the solar wind–moon interaction[J]. Chinese Journal of Space Science, 2022, 42(1): 11-24 doi: 10.11728/cjss2022.01.20220113
    [13] 滕庆. 带电颗粒在月表电场中运动的动力学分析[D]. 哈尔滨: 哈尔滨工业大学, 2015

    TENG Qing. The Dynamics Analysis of Charged Particles in the Electric Field of Lunar Surface[D]. Harbin: Harbin Institute of Technology, 2015
    [14] PIERCE J R. Theory and Design of Electron Beams[M]. New York: Van Nostrand Co. , Inc. , 1954
    [15] Алямовскнй И В. Electron Beam and Electron Gun[M]. Beijing: Vacuum Tube Technology Editorial Team, 1974
    [16] STOFFEL N G, JOHNSON P D. A low-energy high-brightness electron gun for inverse photoemission[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 234(2): 230-234
    [17] JACKSON T L, FARRELL W M, ZIMMERMAN M I. Rover wheel charging on the lunar surface[J]. Advances in Space Research, 2015, 55(6): 1710-1720 doi: 10.1016/j.asr.2014.12.027
    [18] KIRSTEIN P T, KINO G S, WATERS W E, et al. Space-charge flow[J]. Physics Today, 1968, 21(12): 83
    [19] HARTING E, READ F H, BRUNT J N H. Electrostatic Lenses[M]. New York: Elsevier, 1976
    [20] 刘学悫. 阴极电子学[M]. 北京: 科学出版社, 1980

    LIU Xueque. Cathode Electronics[M]. Beijing: Science Press, 1980
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  52
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-29
  • 录用日期:  2022-09-06
  • 修回日期:  2022-10-11
  • 网络出版日期:  2023-02-11

目录

    /

    返回文章
    返回