留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输入受限的漂浮基多柔性空间机器人轨迹跟踪的混合控制及振动主动抑制

谢立敏 于潇雁

谢立敏, 于潇雁. 输入受限的漂浮基多柔性空间机器人轨迹跟踪的混合控制及振动主动抑制[J]. 空间科学学报, 2023, 43(2): 369-380. doi: 10.11728/cjss2023.02.220120008
引用本文: 谢立敏, 于潇雁. 输入受限的漂浮基多柔性空间机器人轨迹跟踪的混合控制及振动主动抑制[J]. 空间科学学报, 2023, 43(2): 369-380. doi: 10.11728/cjss2023.02.220120008
XIE Limin, YU Xiaoyan. Trajectory Tracking Hybrid Control and Vibration Suppression of Free-floating Multi-flexible Space Robot with Limited Input (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 369-380 doi: 10.11728/cjss2023.02.220120008
Citation: XIE Limin, YU Xiaoyan. Trajectory Tracking Hybrid Control and Vibration Suppression of Free-floating Multi-flexible Space Robot with Limited Input (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 369-380 doi: 10.11728/cjss2023.02.220120008

输入受限的漂浮基多柔性空间机器人轨迹跟踪的混合控制及振动主动抑制

doi: 10.11728/cjss2023.02.220120008
基金项目: 国家自然科学基金项目(51741502),福建省自然科学基金面上项目(2020 J01450)和福建省教育厅中青年教师教育科研项目(科技类)(JAT210082)共同资助
详细信息
    作者简介:

    谢立敏:E-mail:lucy_min@163.com

  • 中图分类号: TP241

Trajectory Tracking Hybrid Control and Vibration Suppression of Free-floating Multi-flexible Space Robot with Limited Input

  • 摘要: 空间机器人在实际运作中往往会遇到控制系统输入受限的情况,这将严重影响系统的控制品质。考虑输入受限的情况,对漂浮基多柔性空间机器人系统进行研究。通过对系统进行运动学和动力学分析,构建系统的动力学方程。采用奇异摄动方法,将刚柔耦合系统分为慢变子系统和快变子系统,并为各个子系统设计控制方法。最终提出由改进的鲁棒滑模模糊控制方法、速度差值反馈控制法和线性二次最优控制方法组成的混合控制方法。该控制方法能够主动减小空间机器人完成期望运动所需的力矩,使系统适应输入受限的工作条件;同时能够补偿系统的不确定参数和外部干扰,最终实现系统运动的精确控制和振动的主动抑制。仿真对比实验证明了在输入受限的情况下,所提出的混合控制方法的有效性和强适应性。

     

  • 图  1  机器人关节简化模型

    Figure  1.  Simple model of robot joint

    图  2  柔性杆$ {{{B}}_{{i}}} $的弹性变形

    Figure  2.  Elastic deformation of the flexible link $ {{{B}}_{{i}}} $

    图  3  漂浮基多柔性空间机器人系统

    Figure  3.  Free-floating flexible space robot system

    图  4  输入变量$ \left\| {\boldsymbol{y}} \right\| $$ \left\| {\dot {\boldsymbol{y}}} \right\| $的隶属度函数

    Figure  4.  Membership function of $ \left\| {\boldsymbol{y}} \right\| $ and $ \left\| {\dot {\boldsymbol{y}}} \right\| $

    图  5  输出变量$ {{w}} $的隶属度函数

    Figure  5.  Membership function of $ {{w}} $

    图  6  慢变子系统控制原理

    Figure  6.  Control block diagram of the slow subsystem

    图  7  关节转角的运动轨迹

    Figure  7.  Trajectory of the joint angle

    图  8  柔性杆$ {{{B}}_2} $模态坐标

    Figure  8.  Mode coordinate of flexible link $ {{{B}}_2} $

    图  9  柔性杆$ {{{B}}_2} $的末端变形

    Figure  9.  Deformation of flexible link $ {{{B}}_2} $

    图  10  柔性关节转角误差

    Figure  10.  Flexible joint angle error

    图  11  MRFSMC控制下的力矩

    Figure  11.  Torque under MRFSMC

    图  12  RFSMC控制下的力矩

    Figure  12.  Torque under RFSMC

    图  13  输入受限时MRFSMC控制下的力矩

    Figure  13.  Torque under MRFSMC with limited input

    图  14  输入受限时RFSMC控制下的力矩

    Figure  14.  Torque under RFSMC with limited input

    图  15  关闭快变控制器$ {\tau _{\rm{f}}} $后关节转角的运动轨迹

    Figure  15.  Trajectory of the joint angle when $ {\tau _{\rm{f}}} $ is closed

    图  16  关闭快变控制器$ {\tau _{\rm{f}}} $后柔性杆$ {{{B}}_2} $的模态坐标

    Figure  16.  Mode coordinate of flexible link $ {{{B}}_2} $ when $ {\tau _{\rm{f}}} $ is closed

    图  17  关闭快变控制器$ {\tau _{\rm{f}}} $后柔性杆$ {{{B}}_2} $末端变形

    Figure  17.  Deformation of flexible link $ {{{B}}_2} $ when $ {\tau _{\rm{f}}} $ is closed

    图  18  关闭模糊控制器后关节转角的运动轨迹

    Figure  18.  Trajectory of the joint angle when the fuzzy control is closed

    图  19  关闭模糊控制器后柔性杆$ {{{B}}_2} $的模态坐标

    Figure  19.  Mode coordinate of $ {{{B}}_2} $ when the fuzzy control is closed

    图  20  关节转角的运动轨迹

    Figure  20.  Trajectory of the joint angle

    图  21  柔性杆$ {{{B}}_2} $的模态坐标

    Figure  21.  Mode coordinate of flexible link $ {{{B}}_2} $

    图  22  柔性杆$ {{{B}}_2} $的末端变形

    Figure  22.  Deformation of flexible link $ {{{B}}_2} $

    表  1  仿真的漂浮基空间机器人系统参数

    Table  1.   System parameters of the simulated free-floating space robot

    质量/kg转动惯量/(kg·m2)长度/m密度/(kg·m–1)刚性系数/(N·m·rad–1)
    刚性基座10034.171.5
    杆$ {{B}}{}_1 $不确定不确定不确定不确定不确定
    杆$ {{B}}{}_2 $不确定不确定不确定不确定不确定
    电机转子100.5300
    电机转子200.5300
    下载: 导出CSV
  • [1] STEFANO MD, BALACHANDRAN R, SECCHI C. A passivity-based approach for simulating satellite dynamics with robots: discrete-time integration and time-delay compensation[J]. IEEE Transactions on Robotics, 2020, 36(1): 189-203 doi: 10.1109/TRO.2019.2945883
    [2] DING Xilun, WANG Yecong, WANG Yyaobing, et al. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing[J]. Science China Technological Sciences, 2021, 64(3): 462-480 doi: 10.1007/s11431-020-1737-4
    [3] ZHOU Yiqun, LUO Jianjun, WANG Mingming. Dynamic coupling analysis of multi-arm space robot[J]. Acta Astronautica, 2019, 160: 583-593 doi: 10.1016/j.actaastro.2019.02.017
    [4] 艾海平, 陈力. 空间机器人双臂捕获航天器操作的无源自抗扰避撞从顺控制[J]. 空间科学学报, 2020, 40(4): 584-594 doi: 10.11728/cjss2020.04.584

    AI Haiping, CHEN Li. Passivity active disturbance rejection collision avoidance compliant control of dual-arm space robot capture spacecraft[J]. Chinese Journal of Space Science, 2020, 40(4): 584-594 doi: 10.11728/cjss2020.04.584
    [5] YU Zhangwei, GAO Mingzhou, CAI Guoping. Active control of a 6-DOF space robot with flexible panels using singular perturbation method[J]. The Journal of the Astronautical Sciences, 2019, 66(1): 83-99 doi: 10.1007/s40295-019-00166-3
    [6] PAN Dong, ZHAO Yang ZHANG Yue, et al. Dynamic modeling and analysis of space manipulator considering the flexible of joint and link[J]. Advanced Materials Research, 2013, 823: 270-275 doi: 10.4028/www.scientific.net/AMR.823.270
    [7] 付晓东, 陈力. 全柔性空间机器人基于虚拟力的输出反馈有限维重复学习控制及振动抑制[J]. 空间科学学报, 2021, 41(5): 819-827 doi: 10.11728/cjss2021.05.819

    FU Xiaodong, CHEN Li. Output feedback finite-dimensional repetitive learning control on virtual force for flexible-base flexible-link and flexible-joint space robot[J]. Chinese Journal of Space Science, 2021, 41(5): 819-827 doi: 10.11728/cjss2021.05.819
    [8] 张丽娇, 陈力. 柔性关节和柔性臂空间机器人的L2增益鲁棒控制[J]. 系统仿真学报, 2018, 30(4): 1448-1455

    ZHANG Lijiao, CHEN Li. L2-gain robust control for flexible joints and flexible link space robot[J]. Journal of System Simulation, 2018, 30(4): 1448-1455
    [9] 洪昭斌, 陈力, 李文望. 柔性臂杆、柔性关节空间机械臂T-S模糊轨迹跟踪及双柔振动并行综合控制[J]. 中国机械工程, 2016, 27(15): 2020-2026 doi: 10.3969/j.issn.1004-132X.2016.15.006

    HONG Zhaobin, CHEN Li, LI Wenwang. T-S fuzzy trajectory tracking and double-flexible parallel control of flexible-link flexible-joint space manipulator[J]. China Mechanical Engineering, 2016, 27(15): 2020-2026 doi: 10.3969/j.issn.1004-132X.2016.15.006
    [10] 梁捷, 陈力, 梁频. 空间机械臂刚柔耦合动力学模拟及小波基模糊神经网络控制[J]. 载人航天, 2015, 21(3): 286-294 doi: 10.3969/j.issn.1674-5825.2015.03.013

    LIANG Jie, CHEN Li, LIANG Pin. The rigid-flexible coupling dynamics simulation and wavelet based fuzzy neural network control for space manipulator[J]. Manned Spaceflight, 2015, 21(3): 286-294 doi: 10.3969/j.issn.1674-5825.2015.03.013
    [11] XIE Linmin, YU Xiaoyan, CHEN Li. Robust fuzzy sliding mode control and vibration suppression of free-floating flexible-link and flexible-joints space manipulator with external interference and uncertain parameter[J]. Robotica, 2022, 40(4): 997-1019 doi: 10.1017/S0263574721000977
    [12] AGUIÑAGA-RUIZ E, ZAVALA-RÍO A, SANTIBÁÑEZ V, et al. Global trajectory tracking through static feedback for robot manipulators with bounded inputs[J]. IEEE Transactions on Control Systems Technology, 2009, 17(3): 934-944
    [13] 刘华山, 金元林, 程新, 等. 力矩输入有界的柔性关节机器人轨迹跟踪控制[J]. 控制理论与应用, 2019, 36(6): 983-992 doi: 10.7641/CTA.2018.80200

    LIU Huashan, JIN Yuanlin, CHEN Xin, et al. Trajectory tracking control for flexible-joint robot manipulators with bounded torque inputs[J]. Control Theory & Applications, 2019, 36(6): 983-992 doi: 10.7641/CTA.2018.80200
    [14] PLIEGO-JIMENEZ J, ARTEAGA-PEREZ M A, LOPEZ-RODRIGUEZ M. Finite-time control for rigid robots with bounded input torques[J]. Control Engineering Practice, 2020, 102: 104556 doi: 10.1016/j.conengprac.2020.104556
    [15] DING Shuai, PENG Jinzhou, ZHANG Hui, et al. Neural network-based adaptive hybrid impedance control for electrically driven flexible-joint robotic manipulators with input saturation[J]. Neurocomputing, 2021, 458(2): 99-111
    [16] 时存, 古思勇, 王莹. 力矩受限双臂空间机器人轨迹跟踪与控制[J]. 机械设计与制造, 2020(11): 275-278,283 doi: 10.3969/j.issn.1001-3997.2020.11.068

    SHI Cun, GU Siyong, WANG Ying. Tracking control for dual-arm space robot under the conditions of the limited torque[J]. Machinery Design & Manufacture, 2020(11): 275-278,283 doi: 10.3969/j.issn.1001-3997.2020.11.068
    [17] 庞哲楠, 张国良, 羊帆, 等. 力矩受限的柔性空间机器人模糊神经网络自适应跟踪控制及振动抑制[J]. 计算机应用, 2016, 36(10): 2799-2805,2821 doi: 10.11772/j.issn.1001-9081.2016.10.2799

    PANG Zhenan, ZHANG Guoliang, YANG Fan, et al. Adaptive tracking control and vibration suppression by fuzzy neural network for free-floating flexible space robot with limited torque[J]. Journal of Computer Applications, 2016, 36(10): 2799-2805,2821 doi: 10.11772/j.issn.1001-9081.2016.10.2799
    [18] 谢立敏, 陈力. 力矩受限的柔性关节空间机器人的鲁棒模糊滑模控制[J]. 工程力学, 2013, 30(8): 298-304 doi: 10.6052/j.issn.1000-4750.2012.05.0323

    XIE Limin, CHEN Li. Robust fuzzy sliding mode control of free-floating space robot with flexible-joints and bounded torques[J]. Engineering Mechanics, 2013, 30(8): 298-304 doi: 10.6052/j.issn.1000-4750.2012.05.0323
    [19] LIU Liaoxue, YAO Wei, GUO Yu. Prescribed performance tracking control of a free-flying flexible-joint space robot with disturbances under input saturation[J]. Journal of the Franklin Institute, 2021, 358(9): 4571-4601 doi: 10.1016/j.jfranklin.2021.03.001
    [20] SUN Changyin, GAO Hejia, HE Wei, et al. Fuzzy Neural network control of a flexible robotic manipulator using assumed mode method[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5214-5227 doi: 10.1109/TNNLS.2017.2743103
    [21] LENNARTSON B. Singular perturbation methods in control: Analysis and design: Petar Kokotović, Hassan K. Khalil and John O'Reilly[J]. Automatica, 1989, 25(6): 953-954 doi: 10.1016/0005-1098(89)90063-0
    [22] BEMPORAD A, MORARI M, DUA V, et al. The explicit linear quadratic regulator for constrained systems[J]. Automatica, 2002, 38(1): 3-20 doi: 10.1016/S0005-1098(01)00174-1
    [23] SPONG M W. Modeling and control of elastic joint robots[J]. Journal of Dynamic Systems, Measurement, and Control, 1987, 109(4): 310-318 doi: 10.1115/1.3143860
    [24] KRALL A M. Asymptotic stability of the Euler-Bernoulli beam with boundary control[J]. Journal of Mathematical Analysis and Applications, 1989, 137(1): 288-295 doi: 10.1016/0022-247X(89)90289-8
    [25] 郭振锋, 金国光, 畅博彦, 等. 刚-柔性机械臂动力学建模及其动力学特性研究[J]. 天津工业大学学报, 2013, 32(1): 70-74 doi: 10.3969/j.issn.1671-024X.2013.01.017

    GUO Zhenfeng, JIN Guoguang, CHANG Boiyan, et al. Research of dynamic modeling and performance for rigid-flexible manipulators[J]. Journal of Tianjin Polytechnic University, 2013, 32(1): 70-74 doi: 10.3969/j.issn.1671-024X.2013.01.017
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  63
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 录用日期:  2022-05-30
  • 修回日期:  2022-10-11
  • 网络出版日期:  2023-03-27

目录

    /

    返回文章
    返回