留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中高层大气风场对地磁活动的响应特征

刘晋芳 姜国英 徐寄遥 朱亚军

刘晋芳, 姜国英, 徐寄遥, 朱亚军. 中高层大气风场对地磁活动的响应特征[J]. 空间科学学报, 2023, 43(3): 466-474. doi: 10.11728/cjss2023.03.2022-0016
引用本文: 刘晋芳, 姜国英, 徐寄遥, 朱亚军. 中高层大气风场对地磁活动的响应特征[J]. 空间科学学报, 2023, 43(3): 466-474. doi: 10.11728/cjss2023.03.2022-0016
LIU Jinfang, JIANG Guoying, XU Jiyao, ZHU Yajun. Responses of the Middle and Upper Atmospheric Wind to Geomagnetic Activities (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 466-474 doi: 10.11728/cjss2023.03.2022-0016
Citation: LIU Jinfang, JIANG Guoying, XU Jiyao, ZHU Yajun. Responses of the Middle and Upper Atmospheric Wind to Geomagnetic Activities (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 466-474 doi: 10.11728/cjss2023.03.2022-0016

中高层大气风场对地磁活动的响应特征

doi: 10.11728/cjss2023.03.2022-0016
基金项目: 国家自然科学基金项目(41831073,42174212),中国科学院稳定支持基础研究领域青年团队计划项目(YSBR-018),国家重点研发计划项目(2021YFE0110200)和空间天气学国家重点实验室专项基金项目共同资助
详细信息
    作者简介:

    刘晋芳:E-mail:liujinfang97@163.com

    通讯作者:

    姜国英,E-mail:gyjiang@swl.ac.cn

  • 中图分类号: P351

Responses of the Middle and Upper Atmospheric Wind to Geomagnetic Activities

  • 摘要: 统计研究漠河、北京、武汉流星雷达观测到的2012-2018年80~100 km高度的风场数据,比较在地磁平静期($ Kp\le 2 $)和地磁扰动期($ Kp\ge 4 $)的日平均风场数据,得到在地磁活动期风场的变化特征。研究结果表明,在地磁扰动时风场变化具有季节差异和纬度差异。地磁扰动期间,纬向风在较高纬度地区倾向于中间层西风增强,低热层东风增强,纬度较低地区倾向于东风增强。春季,地磁活动对纬向风的影响没有纬度差异,在夏冬季随着纬度的降低中间层东风增强明显。地磁活动对经向风的影响具有季节差异,对春冬季节的影响强于夏秋季节。研究表明,地磁活动对纬向风的影响可达9 m·s–1左右,对经向风的影响可达5 m·s–1左右。地磁活动对中性大气风场的影响可达80 km。

     

  • 图  1  2012-2018年Kp指数的统计直方图(红色区域表示扰动期的选择范围)

    Figure  1.  Histogram of Kp indices during 2012 and 2018 (The red area indicates the selection range of disturbed conditions)

    图  2  2012-2018年漠河、北京、武汉地磁平静期(a)与地磁扰动期(b)的有效数据天数(MAM表示春季,JJA表示夏季,SON表示秋季,DJF表示冬季)

    Figure  2.  Effective days of Mohe, Beijing and Wuhan during geomagnetic quiet (a) and geomagnetic disturb (b) from 2012 to 2018 (MAM-spring, JJA-summer, SON-autumn, DJF-winter)

    图  3  2012-2018年漠河站、北京站、武汉站4个季节日平均纬向风垂直廓线(误差棒表示标准误差)

    Figure  3.  Profile of the average daily zonal wind of Mohe, Beijing and Wuhan from 2012 to 2018 (The error bar represents the standard error)

    图  4  2012-2018年漠河站、北京站、武汉站4个季节日平均经向风垂直廓线(误差棒表示标准误差)

    Figure  4.  Profile of the average daily meridional wind of Mohe, Beijing and Wuhan from 2012 to 2018 (The error bar represents the standard error)

    表  1  流星雷达的主要参数

    Table  1.   Main parameters of meteor radar

    Meteor radarMoheBeijingWuhan
    Latitude/(°)N 53.5 40.3 30.5
    Longitude/(°)E 122.3 116.2 114.2
    Magnetic latitude/(°)N 48.3 34.9 24.8
    Frequency/MHz 38.9 38.9 38.9
    Peak power/kW 20 7.5 20
    Height range/km 70~110 70~110 70~110
    Height resolution/km 2 2 2
    Time resolution/h 1 1 1
    下载: 导出CSV
  • [1] KNIPP D J, TOBISKA W K, EMERY B A. Direct and indirect thermospheric heating sources for solar cycles 21-23[J]. Solar Physics, 2004, 224(1/2): 495-505
    [2] BANKS P M. Joule heating in the high-latitude mesosphere[J]. Journal of Geophysical Research:Space Physics, 1979, 84(A11): 6709-6712 doi: 10.1029/JA084iA11p06709
    [3] REES M H, EMERY B A, ROBLE R G, et al. Neutral and ion gas heating by auroral electron precipitation[J]. Journal of Geophysical Research: Space Physics, 1983, 88(A8): 6289-6300 doi: 10.1029/JA088iA08p06289
    [4] ROBLE R G, EMERY B A, KILLEEN T L, et al. Joule heating in the mesosphere and thermosphere during the July 13, 1982, solar proton event[J]. Journal of Geophysical Research: Space Physics, 1987, 92(A6): 6083-6090 doi: 10.1029/JA092iA06p06083
    [5] SEPPÄLÄ A, CLILVERD M A, BEHARRELL M J, et al. Substorm-induced energetic electron precipitation: impact on atmospheric chemistry[J]. Geophysical Research Letters, 2015, 42(19): 8172-8176 doi: 10.1002/2015GL065523
    [6] PANCHEVA D, SINGER W, MUKHTAROV P. Regional response of the mesosphere–lower thermosphere dynamics over Scandinavia to solar proton events and geomagnetic storms in late October 2003[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(9): 1075-1094 doi: 10.1016/j.jastp.2007.04.005
    [7] THAYER J P, SEMETER J. The convergence of magnetospheric energy flux in the polar atmosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(10): 807-824 doi: 10.1016/j.jastp.2004.01.035
    [8] JEE G, BURNS A G, WANG W, et al. Driving the TING model with GAIM electron densities: ionospheric effects on the thermosphere[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A3): A03305
    [9] XU J Y, SMITH A K, WANG W B, et al. An observational and theoretical study of the longitudinal variation in neutral temperature induced by aurora heating in the lower thermosphere[J]. Journal of Geophysical Research: Space Physics, 2013, 118(11): 7410-7425 doi: 10.1002/2013JA019144
    [10] LIU X, YUE J, WANG W B, et al. Responses of lower thermospheric temperature to the 2013 St. Patrick's Day geomagnetic storm[J]. Geophysical Research Letters, 2018, 45(10): 4656-4664 doi: 10.1029/2018GL078039
    [11] CHANG L C, THAYER J P, LEI J H, et al. Isolation of the global MLT thermal response to recurrent geomagnetic activity[J]. Geophysical Research Letters, 2009, 36(15): L15813
    [12] JIANG G Y, WANG W B, XU J Y, et al. Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 2014, 119(6): 4841-4859 doi: 10.1002/2013JA019406
    [13] BALSLEY B B, CARTER D A, ECKLUND W L. On the relationship between auroral electrojet intensity fluctuations and the wind field near the mesopause[J]. Geophysical Research Letters, 1982, 9(3): 219-222 doi: 10.1029/GL009i003p00219
    [14] JOHNSON R M, LUHMANN J G. High-latitude mesopause neutral winds and geomagnetic activity: a cross-correlation analysis[J]. Journal of Geophysical Research: Space Physics, 1985, 90(A9): 8501-8506 doi: 10.1029/JA090iA09p08501
    [15] ARNOLD N F, ROBINSON T R. Solar magnetic flux influences on the dynamics of the winter middle atmosphere[J]. Geophysical Research Letters, 2001, 28(12): 2381-2384 doi: 10.1029/2000GL012825
    [16] SINGER W, BREMER J, HOFFMANN P, et al. Geomagnetic influences upon tides—winds from MLT radars[J]. Journal of Atmospheric and Terrestrial Physics, 1994, 56(10): 1301-1311 doi: 10.1016/0021-9169(94)90068-X
    [17] YI W, REID I M, XUE X H, et al. First observations of Antarctic mesospheric tidal wind responses to recurrent geomagnetic activity[J]. Geophysical Research Letters, 2021, 48(4): e2020GL089957
    [18] YI W, REID I M, XUE X H, et al. Response of neutral mesospheric density to geomagnetic forcing[J]. Geophysical Research Letters, 2017, 44(16): 8647-8655 doi: 10.1002/2017GL074813
    [19] YI W, REID I M, XUE X H, et al. First observation of mesosphere response to the solar wind high-speed streams[J]. Journal of Geophysical Research: Space Physics, 2017, 122(8): 9080-9088 doi: 10.1002/2017JA024446
    [20] HOCKING W K, FULLER B, VANDEPEER B. Real-time determination of meteor-related parameters utilizing modern digital technology[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63(2/3): 155-169
    [21] STOBER G, CHAU J L, VIERINEN J, et al. Retrieving horizontally resolved wind fields using multi-static meteor radar observations[J]. Atmospheric Measurement Techniques, 2018, 11(8): 4891-4907 doi: 10.5194/amt-11-4891-2018
    [22] LUO Y, MANSON A H, MEEK C E, et al. The quasi 16-day oscillations in the mesosphere and lower thermosphere at Saskatoon (52°N, 107°W), 1980-1996[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D2): 2125-2138 doi: 10.1029/1999JD900979
    [23] JIANG Guoying, XU Jiyao, SHI Jiankui, et al. The first observation of the atmospheric tides in the mesosphere and lower thermosphere over Hainan, China[J]. Chinese Science Bulletin, 2010, 55(11): 1059-1066 doi: 10.1007/s11434-010-0084-8
    [24] JACOBI C, LILIENTHAL F, KOROTYSHKIN D, et al. Influence of Geomagnetic Disturbances on Midlatitude Mesosphere/Lower Thermosphere Mean Winds and Tides [EB/OL]. [2021-04-19]. https://doi.org/10.5194/egusphere-egu21-31632021-5-6
    [25] MANSON A H, MEEK C E. Winds and tidal oscillations in the upper middle atmosphere at Saskatoon (52°N, 107°W, L= 4.3) during the year June 1982–May 1983[J]. Planetary and Space Science, 1984, 32(9): 1087-1099 doi: 10.1016/0032-0633(84)90134-X
    [26] SCHMINDER R, KÜRSCHNER D, SINGER W, et al. Representative height-time cross-sections of the upper atmosphere wind field over Central Europe 1990-1996[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(17): 2177-2184 doi: 10.1016/S1364-6826(97)00062-X
    [27] JACOBI C. 6 year mean prevailing winds and tides measured by VHF meteor radar over Collm (51.3°N, 13.0°E)[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 78-79: 8-18 doi: 10.1016/j.jastp.2011.04.010
    [28] KOROTYSHKIN D, MERZLYAKOV E, JACOBI C, et al. Longitudinal MLT wind structure at higher mid-latitudes as seen by meteor radars at Central and Eastern Europe (13°E/49°E)[J]. Advances in Space Research, 2019, 63(10): 3154-3166 doi: 10.1016/j.asr.2019.01.036
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  126
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 录用日期:  2022-05-30
  • 修回日期:  2022-12-25
  • 网络出版日期:  2023-02-13

目录

    /

    返回文章
    返回