留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夜间135.6 nm气辉反演的电离层f0F2与测高仪观测比较研究

薛仕翔 姜春华 马征征 徐彬 丁广兴 杨国斌 张援农 赵正予

薛仕翔, 姜春华, 马征征, 徐彬, 丁广兴, 杨国斌, 张援农, 赵正予. 夜间135.6 nm气辉反演的电离层f0F2与测高仪观测比较研究[J]. 空间科学学报, 2023, 43(3): 456-465. doi: 10.11728/cjss2023.03.2022-0018
引用本文: 薛仕翔, 姜春华, 马征征, 徐彬, 丁广兴, 杨国斌, 张援农, 赵正予. 夜间135.6 nm气辉反演的电离层f0F2与测高仪观测比较研究[J]. 空间科学学报, 2023, 43(3): 456-465. doi: 10.11728/cjss2023.03.2022-0018
XUE Shixiang, JIANG Chunhua, MA Zhengzheng, XU Bin, DING Guangxing, YANG Guobin, ZHANG Yuannong, ZHAO Zhengyu. A Comparative Study between the Ionospheric f0F2 from Nighttime OI 135.6 nm Emission and Ionosonde Observations (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 456-465 doi: 10.11728/cjss2023.03.2022-0018
Citation: XUE Shixiang, JIANG Chunhua, MA Zhengzheng, XU Bin, DING Guangxing, YANG Guobin, ZHANG Yuannong, ZHAO Zhengyu. A Comparative Study between the Ionospheric f0F2 from Nighttime OI 135.6 nm Emission and Ionosonde Observations (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 456-465 doi: 10.11728/cjss2023.03.2022-0018

夜间135.6 nm气辉反演的电离层f0F2与测高仪观测比较研究

doi: 10.11728/cjss2023.03.2022-0018
基金项目: 中国电波传播研究所稳定支持科研经费项目(A132001 W03)和国家自然科学基金项目(42104166)共同资助
详细信息
    作者简介:

    薛仕翔:E-mail:wangjifannao@aliyun.com

    通讯作者:

    姜春华,E-mail:chuajiang@whu.edu.cn

  • 中图分类号: P352

A Comparative Study between the Ionospheric f0F2 from Nighttime OI 135.6 nm Emission and Ionosonde Observations

  • 摘要: 在夜间电离层,气辉135.6 nm谱线主要由F层的O+和电子的辐射复合过程以及O+和O的中性复合过程激发,该谱线强度和电离层峰值电子密度NmF2存在很强的相关性。利用夜气辉135.6 nm辐射强度与F2层峰值电子密度NmF2的平方成正比的物理模型,建立了在不同经纬度、地方时、季节和太阳活动下均适用的反演算法。通过DMSP卫星上搭载的紫外光谱成像仪(SSUSI)实际观测的135.6 nm气辉辐射强度来反演相应时空的电离层F2层临界频率f0F2,并将其与地基测高仪探测结果做了综合对比。结果表明,在太阳活动高年(2013年),相对误差小于等于20%的数据占比93.0%,平均相对误差约为7.08%;在太阳活动低年(2017年),相对误差小于等于20%的数据占比80.8%,平均相对误差约为12.64%。最后,对该算法在太阳活动高低年的反演精度差异进行了分析。

     

  • 图  1  OI 135.6 nm夜气辉辐射强度与NmF2平方的拟合(R表示线性相关系数,红色实线为两类数据的线性拟合)

    Figure  1.  Linear fitting of the OI 135.6 nm emission and the square of NmF2 (R represents the linear correlation coefficient, and the red solid line indicates the linear fitting of the two data)

    图  2  2002年春分、夏至、秋分和冬至时NmF2,OI 135.6与换算系数

    Figure  2.  NmF2, OI 135.6 and conversion factor at the spring equinox, summer solstice, autumn equinox and winter solstice in 2002

    图  3  OI 135.6 nm夜气辉辐射强度与NmF2平方在不同区域的拟合(R表示线性相关系数,红色实线为两类数据的线性拟合)。(a)全球区域,(b)A区,(c)B区

    Figure  3.  Linear fitting of the OI 135.6 nm emission and the square of NmF2 in different regions. R represents the linear correlation coefficient, and the red solid line indicates the linear fitting of the two data. (a) Global-zone, (b) A-zone, (c) B-Zone

    图  4  不同纬度区域和不同太阳10.7 cm辐射通量下NmF2平方和OI 135.6 nm辐射强度的换算系数

    Figure  4.  Conversion factor of the square of NmF2 and OI 135.6 nm emission at different latitudes and 10.7 cm solar radio flux

    图  5  2013年1月11日DMSP卫星夜间探测的OI 135.6 nm气辉强度。红色标记为海南富克站的位置(19.53°N,109.13°E)

    Figure  5.  OI 135.6 nm emission at night detected by satellite DMSP on 11 Jan. 2013. The red mark indicates the location of Hainan Fuke station (19.53°N, 109.13°E)

    图  6  2013年估计的f0F2与地基探测f0F2的对比。(a)IRI f0F2,(b)使用Global换算系数反演的f0F2,(c)使用 B 区换算系数反演的f0F2,(d)~(f)相对误差的统计直方图。地点为海南富克站(19.53°N,109.13°E)

    Figure  6.  Comparison between estimated f0F2 and f0F2 detected by ionosonde in 2013. (a) IRI f0F2, (b) f0F2 retrieved from Global conversion factor, (c) f0F2 retrieved from B-zone conversion factor, (d)~(f) statistical histogram of relative difference. The location is Hainan Fuke station (19.53°N, 109.13°E)

    图  7  2017年估计的f0F2与地基探测f0F2的对比。(a)IRI f0F2,(b)使用B区换算系数反演的f0F2,(c)~(d)相对误差的统计直方图。地点为海南富克站(19.53°N,109.13°E)

    Figure  7.  Comparison between estimated f0F2 and f0F2 detected by ionosonde in 2017. (a) IRI f0F2, (b) f0F2 retrieved from B-zone conversion factor, (c)~(d) statistical histogram of relative difference. The location is Hainan Fuke station (19.53°N, 109.13°E)

    表  1  复合反应和复合系数

    Table  1.   Recombination reaction and recombination coefficient

    复合反应复合系数
    $ {\mathrm{O}}^{+}+\mathrm{e}\to \mathrm{O}+hv\left(1356 Å \right) $$ {\alpha }_{135.6}=7.3\times {10}^{-13}(1160/{T}_{\mathrm{e}}{)}^{1/2}\;\mathrm{c}{\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1} $
    $ \mathrm{O}+\mathrm{e}\to {\mathrm{O}}^{-}+hv $$ {k}_{1}=1.3\times {10}^{-15}\;\mathrm{c}{\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1} $
    $ {\mathrm{O}}^{+}+{\mathrm{O}}^{-}\to {\mathrm{O}}'+\mathrm{O}\left(1356 Å \right) $$ \begin{array}{c}{k}_{2}=1.0\times {10}^{-7}\;{\rm{c}}{\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1},{\beta }_{135.6}=0.54\end{array} $
    $ \mathrm{O}+{\mathrm{O}}^{-}\to {\mathrm{O}}_{2}+\mathrm{e} $$ {k}_{3}=1.4\times {10}^{-10}\;\mathrm{c}{\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1} $
     ${\rm{O}}' $表示激发态的氧原子O(5S)。
    下载: 导出CSV
  • [1] WANG Houmao, WANG Yongmei. Airglow simulation based on the atmospheric ultraviolet radiance integrated code of 2012[J]. Science China: Earth Sciences, 2016, 59(2): 425-435 doi: 10.1007/s11430-015-5166-7
    [2] STRICKLAND D J, DONAHUE T M. Excitation and radiative transport of OI 1304 Å resonance radiation—I: The dayglow[J]. Planetary and Space Science, 1970, 18(5): 661-689 doi: 10.1016/0032-0633(70)90049-8
    [3] STRICKLAND D J, ANDERSON JR D E. Radiation transport effects on the OI 1356‐Å limb intensity profile in the dayglow[J]. Journal of Geophysical Research: Space Physics, 1983, 88(A11): 9260-9264 doi: 10.1029/JA088iA11p09260
    [4] CHANDRA S, REED E I, MEIER R R, et al. Remote sensing of the ionospheric F layer by use of O I 6300-Å and O I 1356-Å observations[J]. Journal of Geophysical Research, 1975, 80(16): 2327-2332 doi: 10.1029/JA080i016p02327
    [5] MEIER R R, OPAL C B. Tropical UV arcs: Comparison of brightness with f0F2[J]. Journal of Geophysical Research, 1973, 78(16): 3189-3193 doi: 10.1029/JA078i016p03189
    [6] MEIER R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere[J]. Space Science Reviews, 1991, 58(1): 1-185
    [7] DEMAJISTRE R, PAXTON L J, MORRISON D, et al. Retrievals of nighttime electron density from Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission Global Ultraviolet Imager (GUVI) measurements[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A5): A05305
    [8] PAXTON L J, MENG C I, FOUNTAIN G H, et al. Special sensor ultraviolet spectrographic imager: an instrument description[C]//Proceedings of SPIE 1745, Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing. San Diego: SPIE, 1992: 2-15
    [9] CHRISTENSEN A B, PAXTON L J, AVERY S, et al. Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A12): 1451 doi: 10.1029/2003JA009918
    [10] DYMOND K F, NEE J B, THOMAS R J. The tiny ionospheric photometer: an instrument for measuring ionospheric gradients for the COSMIC constellation[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2000, 11(1): 273-290 doi: 10.3319/TAO.2000.11.1.273(COSMIC)
    [11] MENDE S B, FREY H U, RIDER K, et al. The far ultra-violet imager on the ICON mission[J]. Space Science Reviews, 2017, 212(1): 655-696
    [12] JIANG F, MAO T, ZHANG X X, et al. Observation of thermosphere and ionosphere using the ionosphere PhotoMeter (IPM) on the Chinese meteorological satellite FY-3D[J]. Advances in Space Research, 2020, 66(9): 2151-2167 doi: 10.1016/j.asr.2020.07.027
    [13] STRICKLAND D J, BISHOP J, EVANS J S, et al. Atmospheric Ultraviolet Radiance Integrated Code (AURIC): theory, software architecture, inputs, and selected results[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 62(6): 689-742 doi: 10.1016/S0022-4073(98)00098-3
    [14] BISHOP J, FELDMAN P D. Analysis of the astro-1/Hopkins ultraviolet telescope EUV–FUV dayside nadir spectral radiance measurements[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A6): 1243 doi: 10.1029/2001JA000330
    [15] STEPHAN A W, DYMOND K F, BUDZIEN S A, et al. Middle ultraviolet remote sensing of the equatorial thermosphere during a geomagnetic storm[J]. Annales Geophysicae, 2004, 22(9): 3203-3209 doi: 10.5194/angeo-22-3203-2004
    [16] EVANS J S, LUMPE J D, CORREIRA J, et al. Extension of the AURIC radiative transfer model for mars atmospheric research[C]//AGU Fall Meeting 2013. Washington: American Geophysical Union, 2013: P21 A-1686
    [17] 江芳, 毛田, 李小银, 等. 利用OI 135.6 nm夜气辉辐射探测电离层峰值电子密度及电子总含量的研究[J]. 地球物理学报, 2014, 57(11): 3679-3687

    JIANG Fang, MAO Tian, LI Xiaoyin, et al. The research on NmF2 and TEC derived from nighttime OI 135.6 nm emission measurement[J]. Chinese Journal of Geophysics, 2014, 57(11): 3679-3687
    [18] DING G X, CHEN B, ZHANG X X, et al. A method to derive global O/N2 ratios from SSUSI/DMSP based on Re-AURIC algorithm[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 199: 105196 doi: 10.1016/j.jastp.2020.105196
    [19] QIN J Q, MAKELA J J, KAMALABADI F, et al. Radiative transfer modeling of the OI 135.6 nm emission in the nighttime ionosphere[J]. Journal of Geophysical Research: Space Physics, 2015, 120(11): 10116-10135 doi: 10.1002/2015JA021687
    [20] BRUNE W H, FELDMAN P D, ANDERSON R C, et al. Midlatitude oxygen ultraviolet nightglow[J]. Geophysical Research Letters, 1978, 5(5): 383-386 doi: 10.1029/GL005i005p00383
    [21] DYMOND K F, THONNARD S E, MCCOY R P, et al. An optical remote sensing technique for determining nighttime F region electron density[J]. Radio Science, 1997, 32(5): 1985-1996 doi: 10.1029/97RS01887
    [22] DYMOND K F, NICHOLAS A C, BUDZIEN S A, et al. A comparison of electron densities derived by tomographic inversion of the 135.6-nm ionospheric nightglow emission to incoherent scatter radar measurements[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4585-4596 doi: 10.1029/2018JA026412
    [23] CHAMBERLAIN J W, HUNTEN D W. Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry [M]. New York: Academic Press Inc. , 1987
    [24] BILITZA D, ALTADILL D, TRUHLIK V, et al. International reference ionosphere 2016: from ionospheric climate to real-time weather predictions[J]. Space Weather, 2017, 15(2): 418-429 doi: 10.1002/2016SW001593
    [25] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1468
    [26] RAJESH P K, LIU J Y, HSU M L, et al. Ionospheric electron content and NmF2 from nighttime OI 135.6 nm intensity[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A2): A02313
    [27] QIN J Q. Far ultraviolet remote sensing of the nighttime ionosphere using the OI 130.4-nm emission[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2020JA028049
    [28] GUO B, XU J Y, SUN L C, et al. The seasonal and longitudinal variations of nighttime OI 135.6-nm emission at equatorial ionization anomaly crests observed by the DMSP/SSUSI[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2019JA027764
    [29] TSAI T C, JHUANG H K, LEE L C, et al. Ionospheric peaked structures and their local time, seasonal, and solar activity dependence based on global ionosphere maps[J]. Journal of Geophysical Research: Space Physics, 2019, 124(10): 7994-8014 doi: 10.1029/2019JA026899
    [30] SHEPHERD S G. Altitude-adjusted corrected geomagnetic coordinates: definition and functional approximations[J]. Journal of Geophysical Research: Space Physics, 2014, 119(9): 7501-7521 doi: 10.1002/2014JA020264
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  81
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 录用日期:  2022-06-24
  • 修回日期:  2022-12-01
  • 网络出版日期:  2023-07-04

目录

    /

    返回文章
    返回