留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低轨卫星的空间环境特性及其力学与热学关键问题研究进展

黄劲 常亮 董佰扬 刘泽宇 韩圣星 斯朝铭

黄劲, 常亮, 董佰扬, 刘泽宇, 韩圣星, 斯朝铭. 超低轨卫星的空间环境特性及其力学与热学关键问题研究进展[J]. 空间科学学报, 2023, 43(4): 711-723. doi: 10.11728/cjss2023.04.2022-0010
引用本文: 黄劲, 常亮, 董佰扬, 刘泽宇, 韩圣星, 斯朝铭. 超低轨卫星的空间环境特性及其力学与热学关键问题研究进展[J]. 空间科学学报, 2023, 43(4): 711-723. doi: 10.11728/cjss2023.04.2022-0010
HUANG Jin, CHANG Liang, DONG Baiyang, LIU Zeyu, HAN Shengxing, SI Chaoming. Development on Space Environment and Its Dynamic and Thermal Problems of Ultra-LEO Satellites (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 711-723 doi: 10.11728/cjss2023.04.2022-0010
Citation: HUANG Jin, CHANG Liang, DONG Baiyang, LIU Zeyu, HAN Shengxing, SI Chaoming. Development on Space Environment and Its Dynamic and Thermal Problems of Ultra-LEO Satellites (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 711-723 doi: 10.11728/cjss2023.04.2022-0010

超低轨卫星的空间环境特性及其力学与热学关键问题研究进展

doi: 10.11728/cjss2023.04.2022-0010 cstr: 32142.14.cjss2023.04.2022-0010
详细信息
    作者简介:
  • 中图分类号: P355

Development on Space Environment and Its Dynamic and Thermal Problems of Ultra-LEO Satellites

  • 摘要: 超低轨道飞行器在遥感、科学研究等领域具有广泛的应用需求,已成为研究热点之一。由于超低轨的特殊空间环境限制,超低轨道飞行器需要面临和解决很多技术难点,主要集中在大气环境预测、气动力、气动热等方面。本文针对典型超低轨飞行器任务,研究了主要的大气模型及反演方法,并对模型数据进行了比对。结合多种气动被动稳定的案例,阐述了气动力计算的方法及气动结构设计的重要影响。介绍了气动设计及在气动干扰下的稳定控制方法,阐述了超低轨卫星的气动热环境、仿真算法以及多种防热复合材料及其应用场景。详细分析了针对超低轨卫星的防热散热可变切换技术,并简要评述了各个方案的优缺点。研究结果有助于推动超低轨道卫星关键技术攻关和试验验证,将超低轨飞行器从试验任务尽快转向空间应用任务。

     

  • 图  1  MSISE-00模型与2.0版本的大气温度对比

    Figure  1.  Comparison of atmospheric temperature between MSISE-00 model and version 2.0

    图  2  不同模型大气密度随着高度的变化对比

    Figure  2.  Comparison of atmospheric density changes with altitude in different models

    图  3  某空间物体的衰减轨道

    Figure  3.  Attenuation orbit of a space object

    图  4  低轨卫星气动力求解方法

    Figure  4.  Method for solving aerodynamics of low Earth orbit satellites

    图  5  气动阻力随横截面积的变化

    Figure  5.  Variation of aerodynamic resistance with cross-sectional area

    图  6  GOCE卫星的气动小翼

    Figure  6.  Aerodynamic wings of GOCE satellite

    图  7  X-37航天飞机的V形尾翼

    Figure  7.  V-shaped tail of the X-37 space shuttle

    图  8  力星一号稀薄大气科学实验卫星

    Figure  8.  LX-1 rare atmospheric science experiment satellite

    图  9  飞轮加磁补偿的姿态控制精度

    Figure  9.  Attitude control accuracy of flywheel magnetization compensation

    图  10  超低轨飞行器表面热负荷

    Figure  10.  Surface thermal load of ultra-low orbit aircraft

    图  11  碳/碳复合材料的构成

    Figure  11.  Schematic diagram of carbon/carbon composite material composition

    图  12  X-43 A的防热系统

    Figure  12.  Heat protection system for X-43 A

    图  13  陶瓷纤维防热瓦实物

    Figure  13.  Photo of ceramic fiber thermal tile

    图  14  猎户座探测飞船的防热大底

    Figure  14.  Heat resistant base of the Orion exploration spacecraft

    图  15  多层包覆实物

    Figure  15.  Photo of multi-layer coating

    图  16  波纹夹芯式一体化结构

    Figure  16.  Corrugated sandwich integrated structure

    图  17  梯度隔热材料组成的一体化结构

    Figure  17.  Integrated structure composed of gradient insulation materials

    图  18  热开关工作原理

    Figure  18.  Working principle of thermal switch

    图  19  展开辐射器工作原理

    Figure  19.  Working principle of the deployment radiator

    图  20  主动控制流体回路

    Figure  20.  Active control fluid circuit

    图  21  防热与散热可变切换

    Figure  21.  Variable switching between heat protection and heat dissipation

    表  1  超低轨飞行器表面的气动热流

    Table  1.   Aerodynamic heat flux on the surface of ultra-low orbit vehicles

    轨道
    高度/km
    各区域的气动热流/(W·m–2
    正面迎风30°迎风非迎风侧面
    160300337.7
    1505005513
    14091010022
    135130014029
    130190021042
    1205100560110
    110210002300460
    下载: 导出CSV

    表  2  多层隔热组件的种类及说明

    Table  2.   Types and descriptions of multi-layer insulation components

    多层种类说明
    低温 反射层 聚酯薄膜+金属镀膜(铝、银等)
    间隔层 低密度纤维纸或编织物
    温度 –200~100℃,短期可至120℃
    中温 反射层 聚酰亚胺膜+金属镀膜(铝、银等)
    间隔层 玻璃纤维纸、布等
    温度 –200~350℃,短期450℃
    高温 反射层 金属箔(不锈钢、镍、铝)
    间隔层 高硅氧布、玻璃纤维布及其织物
    温度 –200~1000℃
    下载: 导出CSV
  • [1] CRISP N, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences, 2020, 117: 100619 doi: 10.1016/j.paerosci.2020.100619
    [2] 王彩云, 廖文和. 隐身卫星的现状及其在空间攻防中的应用[J]. 航天电子对抗, 2011, 27(4): 17-19

    WANG Caiyun, LIAO Wenhe. Development status and application in space attack-defense of stealthy satellite[J]. Aerospace Electronic Warfare, 2011, 27(4): 17-19
    [3] CRISP N H, ROBERTS P C E, ROMANO F, et al. System modelling of very low Earth orbit satellites for Earth observation[J]. Acta Astronautica, 2021, 187: 475-491 doi: 10.1016/j.actaastro.2021.07.004
    [4] 吕久明, 路建功, 刁晶晶, 等. 超低轨道卫星技术发展现状及应用[J]. 国防科技, 2020, 41(1): 33-37

    LV Jiuming, LU Jiangong, DIAO Jingjing, et al. The status quo of ultra-low altitude satellite technology and its future use[J]. National Defense Science Technology, 2020, 41(1): 33-37
    [5] KIMOTO Y, YUKUMATSU K, GOTO A, et al. MDM: A flight mission to observe materials degradation in-situ on satellite in super low Earth orbit[J]. Acta Astronautica, 2021, 179: 695-701 doi: 10.1016/j.actaastro.2020.11.048
    [6] COESA. USA standard atmosphere 1976[R]. Washington D C: USA Government Printing Office, 1976
    [7] JACCHIA L G. Static diffusion models of the upper atmosphere with empirical temperature profiles[J]. Smithsonian Contributions to Astrophysics, 1965, 8(9): 213-257 doi: 10.5479/si.00810231.8-9.213
    [8] CHAO C C, GUNNING G R, MOE K, et al. An evaluation of Jacchia 71 and MSIS90 atmosphere models with NASA oderacs decay data[J]. The Journal of the Astronautical Sciences, 1997, 45(2): 131-141 doi: 10.1007/BF03546372
    [9] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA 15-1-SIA 15-16
    [10] EMMERT J T, DROB D P, PICONE J M, et al. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 2021, 8(3): e2020EA001321
    [11] BOWMAN B R, TOBISKA W, MARCOS F A. A new empirical thermospheric density model JB2006 using new solar indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone: AIAA, 2006
    [12] BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5: A1 doi: 10.1051/swsc/2015001
    [13] 靳旭红, 黄飞, 程晓丽, 等. 超低地球轨道卫星大气阻力预测与影响因素分析[J]. 清华大学学报(自然科学版), 2020, 60(3): 219-226

    JIN Xuhong, HUANG Fei, CHENG Xiaoli, et al. Atmospheric drag on satellites flying in lower low-earth orbit[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3): 219-226
    [14] DOORNBOS E. Thermospheric Density and Wind Determination from Satellite Dynamics[M]. Berlin, Heidelberg: Springer, 2012
    [15] BRUINSMA S, BIANCALE R. Total densities derived from accelerometer data[J]. Journal of Spacecraft and Rockets, 2003, 40(2): 230-236 doi: 10.2514/2.3937
    [16] PICONE J M, EMMERT J T, LEAN J L. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A3): A03301
    [17] MOE K, MOE M M. Gas-surface interactions and satellite drag coefficients[J]. Planetary and Space Science, 2005, 53(8): 793-801 doi: 10.1016/j.pss.2005.03.005
    [18] BIRD G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963, 6(10): 1518-1519 doi: 10.1063/1.1710976
    [19] BIRD G A. Application of the direct simulation Monte Carlo method to the full shuttle geometry[C]//5th Joint Thermophysics and Heat Transfer Conference. Seattle: AIAA, 1990
    [20] 王丹. 飞行器气动外形优化设计方法研究与应用[D]. 西安: 西北工业大学, 2015

    WANG Dan. Approache and Application Research on Aerodynamic Shape Optimization Design[D]. Xi’an: Northwestern Polytechnical University, 2015
    [21] 周伟勇, 张育林, 刘昆. 超低轨航天器气动力分析与减阻设计[J]. 宇航学报, 2010, 31(2): 342-348 doi: 10.3873/j.issn.1000-1328.2010.02.007

    ZHOU Weiyong, ZHANG Yulin, LIU Kun. Aerodynamics analysis and reduced drag design for the lower LEO spacecraft[J]. Journal of Astronautics, 2010, 31(2): 342-348 doi: 10.3873/j.issn.1000-1328.2010.02.007
    [22] 胡凌云, 张立华, 程晓丽, 等. 超低轨航天器气动设计与计算方法探讨[J]. 航天器工程, 2016, 25(1): 10-18

    HU Lingyun, ZHANG Lihua, CHENG Xiaoli, et al. Method of aerodynamic design and calculation for ultra-LEO spacecraft[J]. Spacecraft Engineering, 2016, 25(1): 10-18
    [23] 曾其鋆. 气动力矩在超低轨道卫星姿态控制方面的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2009

    ZENG Qiyun. Applications of Aerodynamic Torque to Ultra-Low-Orbit Satellite Attitude Control[D]. Harbin: Harbin Institute of Technology, 2009
    [24] 吴宏鑫, 谈树萍. 航天器控制的现状与未来[J]. 空间控制技术与应用, 2012, 38(5): 1-7

    WU Hongxin, TAN Shuping. Spacecraft control: present and future[J]. Aerospace Control and Application, 2012, 38(5): 1-7
    [25] SCHLANBUSCH R, LORIA A, KRISTIANSEN R, et al. PD+ based output feedback attitude control of rigid bodies[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2146-2152 doi: 10.1109/TAC.2012.2183189
    [26] LAMBERT C, KUMAR B S, HAMEL J F, et al. Implementation and performance of formation flying using differential drag[J]. Acta Astronautica, 2012, 71: 68-82 doi: 10.1016/j.actaastro.2011.08.013
    [27] WISSINK J G. DNS of separating, low reynolds number flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow, 2003, 24(4): 626-635 doi: 10.1016/S0142-727X(03)00056-0
    [28] RASKY D J, MILOS F S, SQUIRE T H. Thermal protection system materials and costs for future reusable launch vehicles[J]. Journal of Spacecraft and Rockets, 2001, 38(2): 294-296 doi: 10.2514/2.3686
    [29] MARSHALL L, CORPENING G, SHERRILL R. A chief engineer’s view of the NASA X-43 A scramjet flight test[C]//AIAA/CIRA 13 th International Space Planes and Hypersonics Systems and Technologies Conference. Capua: AIAA, 2005
    [30] 贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1): 77-80,90 doi: 10.3969/j.issn.1007-2330.2016.01.013

    JIA Xianfeng, LIU Xuhua, QIAO Wenming, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology, 2016, 46(1): 77-80,90 doi: 10.3969/j.issn.1007-2330.2016.01.013
    [31] 黄文宣, 邱慧, 刘峰, 等. 深空探测器防热承力一体化大底结构研究[J]. 航天返回与遥感, 2019, 40(6): 19-25

    HUANG Wenxuan, QIU Hui, LIU Feng, et al. Research on thermal-structural integrated heatshield structure for deep space explorer[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(6): 19-25
    [32] BAPANAPALLI S K, MARTINEZ O, GOGU C, et al. Analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles[C]//47 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island: AIAA, 2006
    [33] 贾芳, 冀晓鹃, 彭浩然, 等. 发射率可变的智能热控涂层研究进展[J]. 热喷涂技术, 2017, 9(2): 9-16

    JIA Fang, JI Xiaojuan, PENG Haoran, et al. The development of variable emissivity smart thermal control coating[J]. Thermal Spray Technology, 2017, 9(2): 9-16
    [34] 郭亮, 张旭升, 黄勇, 等. 空间热开关在航天器热控制中的应用与发展[J]. 光学 精密工程, 2015, 23(1): 216-229 doi: 10.3788/OPE.20152301.0216

    GUO Liang, ZHANG Xusheng, HUANG Yong, et al. Applications and development of space heat switches in spacecraft thermal control[J]. Optics and Precision Engineering, 2015, 23(1): 216-229 doi: 10.3788/OPE.20152301.0216
    [35] 刘欣, 梁新刚. 可展开式辐射器热控对航天器轨道调整的适应性分析[J]. 宇航学报, 2021, 42(3): 390-396 doi: 10.3873/j.issn.1000-1328.2021.03.014

    LIU Xin, LIANG Xingang. Adaptability analysis of deployable radiator thermal control system to spacecraft orbit adjustment[J]. Journal of Astronautics, 2021, 42(3): 390-396 doi: 10.3873/j.issn.1000-1328.2021.03.014
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  1871
  • HTML全文浏览量:  448
  • PDF下载量:  233
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2022-04-21
  • 修回日期:  2022-06-30
  • 网络出版日期:  2023-02-14

目录

    /

    返回文章
    返回