留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于佳木斯雷达与北海道东雷达观测的F层不规则体回波发生率

王玮 张佼佼 王赤 邓翔 蓝爱兰 阎敬业

王玮, 张佼佼, 王赤, 邓翔, 蓝爱兰, 阎敬业. 基于佳木斯雷达与北海道东雷达观测的F层不规则体回波发生率[J]. 空间科学学报, 2023, 43(4): 609-617. doi: 10.11728/cjss2023.04.2022-0028
引用本文: 王玮, 张佼佼, 王赤, 邓翔, 蓝爱兰, 阎敬业. 基于佳木斯雷达与北海道东雷达观测的F层不规则体回波发生率[J]. 空间科学学报, 2023, 43(4): 609-617. doi: 10.11728/cjss2023.04.2022-0028
WANG Wei, ZHANG Jiaojiao, WANG Chi, DENG Xiang, LAN Ailan, YAN Jingye. Comparison of Characteristics of F-region Irregularities Scattering Occurrence Rate Based on the Observation of the Jiamusi Radar and Hokkaido East Radar (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 609-617 doi: 10.11728/cjss2023.04.2022-0028
Citation: WANG Wei, ZHANG Jiaojiao, WANG Chi, DENG Xiang, LAN Ailan, YAN Jingye. Comparison of Characteristics of F-region Irregularities Scattering Occurrence Rate Based on the Observation of the Jiamusi Radar and Hokkaido East Radar (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 609-617 doi: 10.11728/cjss2023.04.2022-0028

基于佳木斯雷达与北海道东雷达观测的F层不规则体回波发生率

doi: 10.11728/cjss2023.04.2022-0028 cstr: 32142.14.cjss2023.04.2022-0028
基金项目: 国家自然科学基金项目(41731070,42174210),中国科学院前沿科学重点研究计划项目(QYZDJ-SSW-JSC028)和中国科学院空间科学战略性先导科技专项项目(XDA15052500)共同资助
详细信息
    作者简介:
  • 中图分类号: P352

Comparison of Characteristics of F-region Irregularities Scattering Occurrence Rate Based on the Observation of the Jiamusi Radar and Hokkaido East Radar

  • 摘要: 利用佳木斯和北海道东高频相干散射雷达的观测数据,对2018年3月至2019年11月期间两部雷达观测到的F层高度的不规则体回波信号发生率的分布特征进行了对比分析。比较了在地磁平静期(Kp < 3)和地磁扰动期(Kp > 3)的不规则体回波发生率变化特征,分析了回波发生率在昏侧与晨侧增强的现象和纬度变化特征。昏侧回波发生率增强现象在45°-64° MLAT范围内普遍存在,其中55°-64° MLAT的回波发生率在地磁扰动期明显增强。而晨侧回波发生率增强现象主要分布在45°-54° MLAT的地区,除了春秋分季外,地磁扰动的增强对其影响较弱。中纬日侧回波发生率受地磁活动影响较小。

     

  • 图  1  北半球SuperDARN雷达视野(粗黑线标出部分为JME雷达和HOK雷达视场)

    Figure  1.  Field of view of SuperDARN radars in the northern hemisphere (The areas marked by black solid lines are field of view of Radar JME and HOK)

    图  2  2018年3月至2019年11月不同季节JME雷达在地磁平静期和扰动期的回波发生率分布

    Figure  2.  Distribution of scattering occurrence rate of the JME radar in three seasons during geomagnetic quiet time and disturbed time from March 2018 to November 2019

    图  3  2018年3月至2019年11月不同季节HOK雷达在地磁平静期和扰动期的回波发生率分布

    Figure  3.  Distribution of scattering occurrence rate of the HOK radar in three seasons during geomagnetic quiet time and disturbed time from March 2018 to November 2019

    图  4  不同季节与不同地磁条件下JME 雷达观测到的不同纬度范围回波发生率随时间的变化

    Figure  4.  Distribution of scattering occurrence rate over time at different latitude ranges observed by the Jiamusi radar, and its variation in the geomagnetic quiet time, the geomagnetic disturb time and different seasons

    图  5  不同季节与不同地磁条件下HOK雷达观测到的不同纬度范围回波发生率随时间的变化

    Figure  5.  Distribution of scattering occurrence rate over time at different latitude ranges observed by the Hokkaido East radar, and its variation in the geomagnetic quiet time, the geomagnetic disturb time and different seasons

  • [1] GREENWALD R A, BAKER K B, DUDENEY J R, et al. DARN/SuperDARN: a global view of the dynamics of high-latitude convection[J]. Space Science Reviews, 1995, 71(1): 763-796
    [2] CHISHAM G, LESTER M, MILAN S E, et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions[J]. Surveys in Geophysics, 2007, 28(1): 33-109 doi: 10.1007/s10712-007-9017-8
    [3] NISHITANI N, RUOHONIEMI J M, LESTER M, et al. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars[J]. Progress in Earth and Planetary Science, 2019, 6(1): 27 doi: 10.1186/s40645-019-0270-5
    [4] 刘二小, 胡红桥, 刘瑞源, 等. 中山站高频雷达回波的日变化特征及地磁活动的影响[J]. 地球物理学报, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024

    LIU Erxiao, HU Hongqiao, LIU Ruiyuan, et al. Diurnal variation of the HF radar echoes at Zhongshan Station and the influence of geomagnetic activity[J]. Chinese Journal of Geophysics, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024
    [5] HU H Q, LIU E X, LIU R Y, et al. Statistical characteristics of ionospheric backscatter observed by SuperDARN Zhongshan radar in Antarctica[J]. Advances in Polar Science, 2013, 24(1): 19-31
    [6] RUOHONIEMI J M, GREENWALD R A, VILLAIN J P, et al. Coherent HF radar backscatter from small-scale irregularities in the dusk sector of the subauroral ionosphere[J]. Journal of Geophysical Research: Space Physics, 1988, 93(A11): 12871-12882 doi: 10.1029/JA093iA11p12871
    [7] RUOHONIEMI J M, GREENWALD R A. Rates of scattering occurrence in routine HF radar observations during solar cycle maximum[J]. Radio Science, 1997, 32(3): 1051-1070 doi: 10.1029/97RS00116
    [8] MILAN S E, YEOMAN T K, LESTER M, et al. Initial backscatter occurrence statistics from the Cutlass HF radars[J]. Annales Geophysicae, 1997, 15(6): 703-718 doi: 10.1007/s00585-997-0703-0
    [9] PARKINSON M L, DEVLIN J C, YE H, et al. On the occurrence and motion of decametre-scale irregularities in the sub-auroral, auroral, and polar cap ionosphere[J]. Annales Geophysicae, 2003, 21(8): 1847-1868 doi: 10.5194/angeo-21-1847-2003
    [10] HOSOKAWA K, IYEMORI T, YUKIMATU A S, et al. Source of field-aligned irregularities in the subauroral F region as observed by the SuperDARN radars[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A11): 24713-24731 doi: 10.1029/2001JA900080
    [11] KOUSTOV A V, PONOMARENKO P V, GHEZELBASH M, et al. Electron density and electric field over resolute bay and F region ionospheric echo detection with the Rankin Inlet and Inuvik SuperDARN radars[J]. Radio Science, 2014, 49(12): 1194-1205 doi: 10.1002/2014RS005579
    [12] HOSOKAWA K, NISHITANI N. Plasma irregularities in the duskside subauroral ionosphere as observed with midlatitude SuperDARN radar in Hokkaido, Japan[J]. Radio Science, 2010, 45(4): RS4003
    [13] 刘建军, 胡红桥, 陈相材. 2012年南极中山站高频相干散射雷达数据集[J]. 中国科学数据(中英文网络版), 2021, 6(2): 64-72

    LIU Jianjun, HU Hongqiao, CHEN Xiangcai. A dataset from the Zhongshan HF coherent scatter radar in Antarctica (2012)[J]. China Scientific Data, 2021, 6(2): 64-72
    [14] ZHANG J J, WANG W, WANG C, et al. First observation of ionospheric convection from the Jiamusi HF radar during a strong geomagnetic storm[J]. Earth and Space Science, 2020, 7(1): e2019EA000911 doi: 10.1029/2019EA000911
    [15] 邓翔, 阎敬业, 吴季, 等. AgileDARN雷达内定标的方法与实现[J]. 遥感技术与应用, 2019, 34(6): 1221-1226 doi: 10.11873/j.issn.1004-0323.2019.6.1221

    DENG Xiang, YAN Jingye, WU Ji, et al. A method and implementation of internal calibration in AgileDARN HF radar[J]. Remote Sensing Technology and Application, 2019, 34(6): 1221-1226 doi: 10.11873/j.issn.1004-0323.2019.6.1221
    [16] BLANCHARD G T, SUNDEEN S, BAKER K B. Probabilistic identification of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics[J]. Radio Science, 2009, 44(5): RS5012 doi: 10.1029/2009RS004141
    [17] SCHERLIESS L, FEJER B G, HOLT J, et al. Radar studies of midlatitude ionospheric plasma drifts[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A2): 1771-1783 doi: 10.1029/2000JA000229
    [18] MAIMAITI M, RUOHONIEMI J M, BAKER J B H, et al. Statistical study of nightside quiet time midlatitude ionospheric convection[J]. Journal of Geophysical Research: Space Physics, 2018, 123(3): 2228-2240 doi: 10.1002/2017JA024903
  • 加载中
图(5)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  229
  • PDF下载量:  55
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2022-06-17
  • 录用日期:  2023-06-25
  • 修回日期:  2022-08-15
  • 网络出版日期:  2023-06-25

目录

    /

    返回文章
    返回