[1] |
申连华, 张星, 陈艺, 等. 电推进工质的研究进展及发展趋势[J]. 火箭推进, 2017, 43(6): 7-13,75 doi: 10.3969/j.issn.1672-9374.2017.06.002SHEN Lianhua, ZHANG Xing, CHENG Yi, et al. Research progress and development trend of working medium for electric propulsion[J]. Journal of Rocket Propulsion, 2017, 43(6): 7-13,75 doi: 10.3969/j.issn.1672-9374.2017.06.002
|
[2] |
DUCHEMIN O, VALENTIAN D, CORNU N. Cryostorage of propellants for electric propulsion[C]//45 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver: AIAA, 2009
|
[3] |
陈既东, 朱建炳, 赵积鹏, 等. 电推进系统液氪低温推进剂贮箱关键技术分析[J]. 真空与低温, 2022, 28(6): 660-667 doi: 10.3969/j.issn.1006-7086.2022.06.005CHEN Jidong, ZHU Jianbing, ZHAO Jipeng, et al. Key technology analysis of liquid krypton cryogenic propellant tank in electric propulsion system[J]. Vacuum and Cryogenics, 2022, 28(6): 660-667 doi: 10.3969/j.issn.1006-7086.2022.06.005
|
[4] |
BELMEDANI M, BELGACEM A, REBIAI R. Analysis of natural convection in liquid nitrogen under storage conditions[J]. Journal of Applied Sciences, 2008, 8(14): 2544-2552 doi: 10.3923/jas.2008.2544.2552
|
[5] |
STEWART M. Pressurization of a flight weight, liquid hydrogen tank: evaporation & condensation at the liquid/vapor interface[C]//53 rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta: AIAA, 2017
|
[6] |
PANZARELLA C H, KASSEMI M. Self-pressurization of large spherical cryogenic tanks in space[J]. Journal of Spacecraft and Rockets, 2005, 42(2): 299-308 doi: 10.2514/1.4571
|
[7] |
PANZARELLA C, PLACHTA D, KASSEMI M. Pressure control of large cryogenic tanks in microgravity[J]. Cryogenics, 2004, 44(6/8): 475-483
|
[8] |
杨鹏, 闫春杰, 郑永煜, 等. 微重力环境下低温推进剂贮箱内气泡运动及融合特性研究[J]. 西安交通大学学报, 2022, 56(9): 84-91YANG Peng, YAN Chunjie, ZHENG Yongyi, et al. Bubble movement and coalescence characteristics in cryogenic propellant tank in microgravity environment[J]. Journal of Xi’an Jiaotong University, 2022, 56(9): 84-91
|
[9] |
闫春杰, 郑永煜, 杨祺, 等. 微重力环境下低温推进剂贮箱内气液界面形变特性研究[J]. 真空与低温, 2022, 28(3): 285-290 doi: 10.3969/j.issn.1006-7086.2022.03.006YAN Chunjie, ZHENG Yongyi, YANG Qi, et al. Deformation characteristics of gas-liquid interface in cryogenic propellant tank under microgravity environment[J]. Vacuum and Cryogenics, 2022, 28(3): 285-290 doi: 10.3969/j.issn.1006-7086.2022.03.006
|
[10] |
AYDELOTT J C. Effect of Gravity on Self-pressurization of Spherical Liquid-hydrogen Tankage[R]. Washington: NASA, 1967
|
[11] |
DAIGLE M J, SMELYANSKIY V N, BOSCHEE J, et al. Temperature stratification in a cryogenic fuel tank[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(1): 116-126 doi: 10.2514/1.T3933
|
[12] |
刘展, 孙培杰, 李鹏, 等. 微重力下低温液氧贮箱热分层研究[J]. 低温工程, 2016(1): 25-31,53 doi: 10.3969/j.issn.1000-6516.2016.01.006LIU Zhan, SUN Peijie, LI Peng, et al. Research on thermal stratification of cryogenic liquid oxygen tank in microgravity[J]. Cryogenics, 2016(1): 25-31,53 doi: 10.3969/j.issn.1000-6516.2016.01.006
|
[13] |
王妍卉, 周炳红. 微重力条件下初始液氢温度对低温推进剂贮箱气枕压力的影响[J]. 空间科学学报, 2020, 40(3): 394-400 doi: 10.11728/cjss2020.03.394WANG Yanhui, ZHOU Binghong. Effect of initial liquid hydrogen temperature on the pressure changes in the cryogenic propellant tank[J]. Chinese Journal of Space Science, 2020, 40(3): 394-400 doi: 10.11728/cjss2020.03.394
|
[14] |
JIANG Y B, YU Y S, WANG Z, et al. CFD simulation of heat transfer and phase change characteristics of the cryogenic liquid hydrogen tank under microgravity conditions[J]. International Journal of Hydrogen Energy, 2023, 48(19): 7026-7037 doi: 10.1016/j.ijhydene.2022.04.006
|
[15] |
VISHNU S B, KUZHIVELI B T. Effect of micro- and elevated gravity condition on the evolution of stratification and self-pressurization in a cryogenic propellant tank[J]. Sādhanā, 2019, 44(3): 63
|
[16] |
FU J, SUNDEN B, CHEN X Q, et al. Influence of phase change on self-pressurization in cryogenic tanks under microgravity[J]. Applied Thermal Engineering, 2015, 87: 225-233 doi: 10.1016/j.applthermaleng.2015.05.020
|
[17] |
KARTUZOVA O, KASSEMI M. Modeling interfacial turbulent heat transfer during ventless pressurization of a large scale cryogenic storage tank in microgravity[C]//47 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego: AIAA, 2015
|
[18] |
王夕, 王珏, 容易, 等. 微重力下低温贮箱内推进剂相变仿真模型研究[J]. 导弹与航天运载技术, 2018(1): 36-40WANG Xi, WANG Yu, RONG Yi, et al. Computational research on phase change model for cryogenic propellant in microgravity[J]. Missiles and Space Vehicles, 2018(1): 36-40
|
[19] |
LIN C S, HASAN M M. Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment[C]//30th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1992
|
[20] |
SEO M, JEONG S. Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model[J]. Cryogenics, 2010, 50(9): 549-555 doi: 10.1016/j.cryogenics.2010.02.021
|
[21] |
BROWN J S. Vapor Condensation on Turbulent Liquid [D]. Cambridge: Massachusetts Institute of Technology, 1991
|