留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同气氛热冲击下Al:WS2薄膜摩擦学性能的响应机理

刘建 剡珍 郝俊英 刘维民

刘建, 剡珍, 郝俊英, 刘维民. 不同气氛热冲击下Al:WS2薄膜摩擦学性能的响应机理[J]. 空间科学学报, 2023, 43(5): 899-906. doi: 10.11728/cjss2023.05.2022-0037
引用本文: 刘建, 剡珍, 郝俊英, 刘维民. 不同气氛热冲击下Al:WS2薄膜摩擦学性能的响应机理[J]. 空间科学学报, 2023, 43(5): 899-906. doi: 10.11728/cjss2023.05.2022-0037
LIU Jian, YAN Zhen, HAO Junying, LIU Weimin. Response Mechanism of Tribological Properties of Al:WS2 Film under Different Ambient Thermal Shock (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 899-906 doi: 10.11728/cjss2023.05.2022-0037
Citation: LIU Jian, YAN Zhen, HAO Junying, LIU Weimin. Response Mechanism of Tribological Properties of Al:WS2 Film under Different Ambient Thermal Shock (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 899-906 doi: 10.11728/cjss2023.05.2022-0037

不同气氛热冲击下Al:WS2薄膜摩擦学性能的响应机理

doi: 10.11728/cjss2023.05.2022-0037 cstr: 32142.14.cjss2023.05.2022-0037
基金项目: 国家自然科学基金项目(51835012,51975554),甘肃省自然科学基金项目(21JR7RA093)和青年人才托举工程项目共同资助
详细信息
    作者简介:
    通讯作者:
  • 中图分类号: V519.11

Response Mechanism of Tribological Properties of Al:WS2 Film under Different Ambient Thermal Shock

  • 摘要: 采用磁控溅射技术制备了Al:WS2薄膜。为考查不同气氛热冲击下Al:WS2薄膜摩擦学性能的响应机理,采用自行研制的温度交变真空摩擦试验机开展了真空、氮气及氧气气氛的–100~+250℃的热冲击试验,并对热冲击后Al:WS2薄膜结构、成分以及摩擦学性能进行了研究。研究发现,热冲击后,Al:WS2薄膜柱状晶长大,S含量减少,部分WS2被氧化为WO3,薄膜硬度增加。经氮气热冲击后,薄膜的(002)衍射峰强度明显增强,使得摩擦系数降低。经真空热冲击后,在薄膜表面形成的WO3起到磨粒磨损作用,减少了薄膜寿命;经氧气热冲击后,Al:WS2薄膜中大量起润滑作用的WS2被氧化为WO3,薄膜的寿命显著缩短。

     

  • 图  1  未处理及经热冲击的Al:WS2薄膜表面与断面形貌

    Figure  1.  FESEM morphologies of surface and cross-section of untreated and thermal shocked Al:WS2 films

    图  2  未处理与热冲击Al:WS2薄膜的GIXRD谱

    Figure  2.  GIXRD patterns of untreated and thermal shocked Al:WS2 films

    图  3  未处理及不同气氛热冲击后Al:WS2薄膜的硬度

    Figure  3.  Hardness of untreated and thermal shocked Al:WS2 films

    图  4  未处理及不同气氛热冲击后Al:WS2薄膜的XPS全谱、W 4f和W 5s高分辨谱

    Figure  4.  Survey, fitted high-resolution W 4f and W 5s XPS spectra of untreated and thermal shocked Al:WS2 films

    图  5  未处理及不同气氛热冲击后Al:WS2薄膜的真空摩擦曲线

    Figure  5.  Friction curves of untreated and thermal shocked Al:WS2 films

    图  6  未处理及不同气氛热冲击后Al:WS2薄膜的 3D形貌

    Figure  6.  3D profiles of wear tracks of untreated and thermal shocked Al:WS2 films

    图  7  计算未处理及不同气氛热冲击后Al:WS2薄膜的磨损率

    Figure  7.  Calculated wear rates of untreated and thermal shocked Al:WS2 films

    图  8  未处理及不同气氛热冲击后Al:WS2薄膜的磨痕与对偶球磨斑形貌的SEM

    Figure  8.  SEM micrographs of wear track and wear scar of untreated and thermal shocked Al:WS2 films

    表  1  磁控溅射沉积Al:WS2薄膜的工艺参数

    Table  1.   Deposition parameter of Al:WS2 film by magnetron sputtering system

    Deposition parametersValues
    WS2 target power/W600
    Al target current/A0.15
    Working pressure/Pa6.0×10–3
    Bias voltage/V–20
    Ar flow/(mL·min–1)70
    Substrate rotation speed/(r·min–1)1
    Deposition time/min150
    下载: 导出CSV

    表  2  由XPS计算得到的未处理及不同气氛热冲击后Al:WS2薄膜的相对元素含量(原子百分数)

    Table  2.   Calculated element content (atom percent) of untreated and thermal shocked Al:WS2 films

    SpecimenWSAlCO
    Al:WS212.4319.710.9244.5422.40
    Vacuum7.739.851.3161.8619.25
    N210.4213.510.5354.5421.00
    O29.434.85049.8835.84
    下载: 导出CSV

    表  3  未处理及不同气氛热冲击后Al:WS2薄膜的 W 4f XPS拟合数据

    Table  3.   Fitted W 4f XPS data of untreated and thermal shocked Al:WS2 films

    SpecimenW 4f
    WS2 (atom percent)WO3 (atom percent)
    Al:WS266.7233.28
    Vacuum62.9137.09
    N259.5640.44
    O227.1472.86
    下载: 导出CSV

    表  4  未处理及不同气氛热冲击后Al:WS2薄膜的磨斑转移膜EDS元素成分分析(原子百分数)

    Table  4.   Element content (atom percent) from EDS analysis of transfer films on wear scars of untreated and thermal shocked Al:WS2 films

    SpecimenAlWSCOFe
    Al:WS20.26.35.95.515.466.6
    Vacuum0.10.90.35.010.483.3
    N20.221.119.08.024.627.0
    下载: 导出CSV
  • [1] JOST H P. Tribology-origin and future[J]. Wear, 1990, 136(1): 1-17 doi: 10.1016/0043-1648(90)90068-L
    [2] MATSUMOTO K, TAGAWA M, AKIYAMA M. Tribological characteristics of bonded MoS2 film exposed to AO, UV and real LEO environment in SM/SEED experiment[J]. AIP Conference Proceedings, 2009, 1087(1): 148-153
    [3] VAZIRISERESHK M R, MARTINI A, STRUBBE D A, et al. Solid lubrication with MoS2: a review[J]. Lubricants, 2019, 7(7): 57 doi: 10.3390/lubricants7070057
    [4] CAI M R, YU Q L, LIU W M, et al. Ionic liquid lubricants: when chemistry meets tribology[J]. Chemical Society Reviews, 2020, 49(21): 7753-7818 doi: 10.1039/D0CS00126K
    [5] SERLES P, GABER K, PAJOVIC S, et al. High temperature microtribological studies of MoS2 lubrication for low earth orbit[J]. Lubricants, 2020, 8(4): 49 doi: 10.3390/lubricants8040049
    [6] 高晓明, 胡明, 孙嘉奕, 等. 润滑材料的空间环境效应[J]. 中国材料进展, 2017, 36(7/8): 481-491 doi: 10.7502/j.issn.1674-3962.2017.07.01

    GAO Xiaoming, HU Ming, SUN Jiayi, et al. Space environment effects on lubricants[J]. Materials China, 2017, 36(7/8): 481-491 doi: 10.7502/j.issn.1674-3962.2017.07.01
    [7] 钟爱文, 姚萍屏, 肖叶龙, 等. 空间摩擦学及其材料的研究进展[J]. 航空材料学报, 2017, 37(2): 88-99 doi: 10.11868/j.issn.1005-5053.2015.000195

    ZHANG Aiwen, YAO Pingping, XIAO Yelong, et al. Research status and developing trend of space tribology and tribological materials[J]. Journal of Aeronautical Materials, 2017, 37(2): 88-99 doi: 10.11868/j.issn.1005-5053.2015.000195
    [8] YANG J, WANG D S, FU Y L, et al. Improving the tribological and anti-corrosion property of the WS2 film through Ta doping[J]. Vacuum, 2021, 192: 110485 doi: 10.1016/j.vacuum.2021.110485
    [9] FAN X, SHI Y B, CUI M J, et al. MoS2/WS2 nanosheet-based composite films irradiated by atomic oxygen: implications for lubrication in space[J]. ACS Applied Nano Materials, 2021, 4(10): 10307-10320 doi: 10.1021/acsanm.1c01816
    [10] MARIAN M, BERMAN D, ROTA A, et al. Layered 2 D nanomaterials to tailor friction and wear in machine elements—a review[J]. Advanced Materials Interfaces, 2022, 9(3): 2101622 doi: 10.1002/admi.202101622
    [11] YAN Z, SUI X D, YAN M M, et al. Dependence of friction and wear on the microstructures of WS2 films under a simulated space environment[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56632-56641
    [12] FU Y L, JIANG D, WANG D S, et al. Tribological performance of MoS2–WS2 composite film under the atomic oxygen irradiation conditions[J]. Materials, 2020, 13(6): 1407 doi: 10.3390/ma13061407
    [13] LINCE J R. Effective application of solid lubricants in spacecraft mechanisms[J]. Lubricants, 2020, 8(7): 74 doi: 10.3390/lubricants8070074
    [14] XU S S, GAO X M, HU M, et al. Dependence of atomic oxygen resistance and the tribological properties on microstructures of WS2 films[J]. Applied Surface Science, 2014, 298: 36-43 doi: 10.1016/j.apsusc.2014.01.002
    [15] GAO X M, FU Y L, JIANG D, et al. Structural, mechanical, and tribological properties of WS2-Al nanocomposite film for space application[J]. Tribology Letters, 2018, 66(4): 137 doi: 10.1007/s11249-018-1085-z
    [16] ZHANG R, CUI Q F, WENG L J, et al. Modification of structure and wear resistance of closed-field unbalanced-magnetron sputtered MoS2 film by vacuum-heat-treatment[J]. Surface and Coatings Technology, 2020, 401: 126215 doi: 10.1016/j.surfcoat.2020.126215
    [17] 董春萌, 高晓明, 余兵, 等. 水浴对MoS2薄膜结构及摩擦学性能影响的研究[J]. 摩擦学学报, 2020, 40(2): 166-174

    DONG Chunmeng, GAO Xiaoming, YU Bing, et al. Structure and tribological behaviors of MoS2 films treated by water bath[J]. Tribology, 2020, 40(2): 166-174
    [18] LIU J, SUI X D, YAN Z, et al. Cr doped MoS2 films: tribological properties, microstructure, and electronic structure[J]. Journal of Tribology, 2021, 143(9): 091401 doi: 10.1115/1.4050141
    [19] DING X Z, ZENG X T, HE X Y, et al. Tribological properties of Cr- and Ti-doped MoS2 composite coatings under different humidity atmosphere[J]. Surface and Coatings Technology, 2010, 205(1): 224-231 doi: 10.1016/j.surfcoat.2010.06.041
    [20] XU S S, GAO X M, SUN J Y, et al. Comparative study of moisture corrosion to WS2 and WS2/Cu multilayer films[J]. Surface and Coatings Technology, 2014, 247: 30-38 doi: 10.1016/j.surfcoat.2014.03.001
    [21] CAI H C, XUE Y J, LI H, et al. Friction and wear behavior of self-lubricating La-Ti/WS2 films by unbalanced magnetron sputtering[J]. Rare Metal Materials and Engineering, 2021, 50(8): 2708-2714
    [22] LIU J, YAN Z, HAO J Y, et al. Two strategies to improve the lubricating performance of WS2 film for space application[J]. Tribology International, 2022, 175: 107825 doi: 10.1016/j.triboint.2022.107825
    [23] NEVSHUPA R A, DE SEGOVIA J L, ROMAN E. Surface-induced reactions of absorbed hydrogen under mutual mechanical forces[J]. Vacuum, 2005, 80(1/2/3): 241-246
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  160
  • PDF下载量:  35
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2022-08-07
  • 录用日期:  2023-06-25
  • 修回日期:  2022-11-30
  • 网络出版日期:  2023-06-25

目录

    /

    返回文章
    返回