留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天传感器响应波段星等计算方法

勾万祥 贾靖玉 陈少杰 李崇辉 郑勇

勾万祥, 贾靖玉, 陈少杰, 李崇辉, 郑勇. 航天传感器响应波段星等计算方法[J]. 空间科学学报, 2023, 43(5): 916-926. doi: 10.11728/cjss2023.05.2023-0046
引用本文: 勾万祥, 贾靖玉, 陈少杰, 李崇辉, 郑勇. 航天传感器响应波段星等计算方法[J]. 空间科学学报, 2023, 43(5): 916-926. doi: 10.11728/cjss2023.05.2023-0046
GOU Wanxiang, JIA Jingyu, CHEN Shaojie, LI Chonghui, ZHENG Yong. Calculation Method for Response Band Magnitude of Aerospace Sensors (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 916-926 doi: 10.11728/cjss2023.05.2023-0046
Citation: GOU Wanxiang, JIA Jingyu, CHEN Shaojie, LI Chonghui, ZHENG Yong. Calculation Method for Response Band Magnitude of Aerospace Sensors (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 916-926 doi: 10.11728/cjss2023.05.2023-0046

航天传感器响应波段星等计算方法

doi: 10.11728/cjss2023.05.2023-0046 cstr: 32142.14.cjss2023.05.2023-0046
基金项目: 河南省自然科学基金项目资助(212300410421)
详细信息
    作者简介:
    通讯作者:
  • 中图分类号: V19

Calculation Method for Response Band Magnitude of Aerospace Sensors

  • 摘要: 精确的恒星星等信息是开展导航星表建立、航天器定姿、红外相机定标等工作的基础,现有公开星表涵盖测光波段不全且带宽普遍较窄,难以找到与任务传感器响应波段相匹配的星等信息。为此提出了一种基于恒星辐射光谱的传感器响应波段星等计算方法。该方法利用公开星表数据信息,建立星表测光波段与传感器响应波段星等差值模型,对星表星等与传感器响应波段星等差值进行估算;将色指数计算的恒星近似表面温度作为先验信息,在传感器响应波段区间进行普朗克方程求解,进而推算恒星在传感器响应波段的星等。星表数据计算验证表明,该方法具有较好的稳健性和适应性,对传感器响应波段星等推导精度为0.066等 (1δ),93.3%恒星推算误差优于0.2等,可满足导航星表建立、航天器定姿、红外相机定标等应用需求。

     

  • 图  1  黑体辐射光谱流量

    Figure  1.  Blackbody radiation spectral flow diagram

    图  2  恒星辐射光谱

    Figure  2.  Schematic diagram of stellar spectral radiation

    图  3  星表测光波段与传感器响应波段星等差值

    Figure  3.  Difference in magnitude between the photometry band of the star catalog and the sensor response band

    图  4  恒星传感器响应波段星等计算流程

    Figure  4.  Flow chart of star sensor response band magnitude calculation

    图  5  星表星等差值统计

    Figure  5.  Statistical chart of star magnitude difference in different star catalogue

    图  6  黑体辐射推算星等误差统计

    Figure  6.  Statistical diagram of magnitude error in blackbody radiation estimation

    表  1  Johnson测光系统部分参数

    Table  1.   Partial parameters of Johnson photometry system

    测光波段UBVRIJHK
    有效波长/μm0.3660.4380.5450.6410.7981.221.632.19
    半波带宽/μm0.0660.0940.0880.1380.1490.2130.3070.390
    0星等辐流量/(10–14 W·cm–2·μm–1417.5632363.1217.7112.631.4711.383.961
    下载: 导出CSV

    表  2  同一恒星不同波段星等差异

    Table  2.   Different band magnitudes of the same star

    恒星HIP编号测光波段
    BVRIJH
    214797.325.875.064.39–2.62–3.73
    32349–1.46–1.46–1.46–1.43–1.36–1.33
    344442.691.911.431.050.770.54
    782652.662.832.913.083.473.5
    912620.030.030.070.10–0.18–0.03
    下载: 导出CSV

    表  3  部分星表测光波段数据

    Table  3.   Partial photometric band data of open star catalog

    星表滤光片有效波长/μm半波带宽/μm
    Hipparcos Hp 0.550 0.225
    Tycho BT 0.420 0.075
    VT 0.510 0.100
    SDSS u 0.352 0.063
    g 0.480 0.141
    r 0.625 0.139
    i 0.769 0.154
    z 0.911 0.141
    PAN-STARRS
    Ps1 g 0.484 0.105
    Ps1 r 0.620 0.125
    Ps1 w 0.629 0.256
    Ps1 open 0.694 0.398
    Ps1 i 0.753 0.121
    Ps1 z 0.868 0.099
    Ps1 y 0.963 0.064
    2 MASS J 1.236 0.162
    H 1.662 0.251
    K 2.159 0.262
    GAIA Gbp 0.504 0.233
    G 0.585 0.420
    Grp 0.769 0.284
    WISE W1 3.353 0.663
    W2 4.603 1.042
    W3 11.561 5.506
    W4 22.088 4.102
    IRAS IRAS 12 μm 10.164 6.067
    IRAS 25 μm 21.735 10.018
    IRAS 60 μm 52.137 30.516
    IRAS 100 μm 95.484 33.265
    下载: 导出CSV

    表  4  星表对应波段星等差值统计

    Table  4.   Magnitude differences of star catalogue for corresponding bands

    星等差值|Δmag|0.050.05~0.10.1~0.20.2~0.3<0.5均值方差
    Hp与VT62.7%30.2%4.3%1.2%99.7%0.050.08
    G与R21.8%16.6%18.1%36.9%98.3%0.160.15
    下载: 导出CSV
  • [1] LU R, WU Y P. Estimation of stellar instrument magnitudes using synthetic photometry[C]//2019 IEEE Aerospace Conference. Big Sky: IEEE, 2019: 1-7
    [2] 牟达, 李全勇, 董家宁. 地基红外系统探测空间目标红外星等的分析[J]. 红外与激光工程, 2011, 40(9): 1609-1613

    MU Da, LI Quanyong, DONG Jianing. Analysis on ground-based infrared detection system detecting the infrared magnitude of space targets[J]. Infrared and Laser Engineering, 2011, 40(9): 1609-1613
    [3] WANG W J, WEI X G, LI J, et al. Guide star catalog generation for short-wave infrared (SWIR) All-Time star sensor[J]. Review of Scientific Instruments, 2018, 89(7): 075003 doi: 10.1063/1.5023157
    [4] LORENZO-OLIVEIRA D, DE MELLO G F P, DUTRA-FERREIRA L, et al. Fine structure of the age-chromospheric activity relation in solar-type stars: I. The Ca II infrared triplet: absolute flux calibration[J]. Astronomy & Astrophysics, 2016, 595: A11
    [5] 张辉, 周向东, 汪新梅, 等. 近地空间全天时星敏感器技术现状及发展综述[J]. 航空学报, 2020, 41(8): 623719

    ZHANG Hui, ZHOU Xiangdong, WANG Xinmei, et al. Survey of technology status and development of all-time star sensors in near-earth space[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623719
    [6] 黄晨, 王建军, 高昕, 等. 红外星表在地基红外辐射测量系统中的应用[J]. 红外与激光工程, 2013, 42(11): 2901-2906 doi: 10.3969/j.issn.1007-2276.2013.11.006

    HUANG Chen, WANG Jianjun, GAO Xin, et al. Application of infrared star catalog in ground-based infrared radiation measurement system[J]. Infrared and Laser Engineering, 2013, 42(11): 2901-2906 doi: 10.3969/j.issn.1007-2276.2013.11.006
    [7] MA Y, JIANG J, ZHANG G J. Stellar instrument magnitude estimation in infinite-dimensional space[J]. IEEE Sensors Journal, 2020, 20(3): 1422-1432 doi: 10.1109/JSEN.2019.2946836
    [8] STRUNZ H C, BAKER T, ETHRIDGE D. Estimation of stellar instrument magnitudes[C]//Proceedings of the SPIE 1949, Space Guidance, Control, and Tracking. Orlando: SPIE, 1993: 228-235
    [9] VAN DER BLIEK N S, BOUCHET P, HABING H J, et al. Standard stars for the Infrared Space Observatory, ISO[J]. Messenger, European Southern Observatory, Garching, Germany, 1992: 28-30
    [10] BLACKWELL D E, LYNAS-GRAY A E. Determination of the temperatures of selected ISO flux calibration stars using the Infrared Flux Method[J]. Astronomy and Astrophysics Supplement Series, 1998, 129(3): 505-515 doi: 10.1051/aas:1998202
    [11] KRUZHILOV I S. Evaluation of instrument stellar magnitudes without recourse to data as to star spectral classes[J]. Journal of Applied Remote Sensing, 2012, 6(1): 063537 doi: 10.1117/1.JRS.6.063537
    [12] KRUZHILOV I, KARELIN A, KNIAZEV V, et al. Calculating stellar magnitude to enhance guide star catalogs[J]. SPIE Newsroom, 2012
    [13] 张婉莹, 王涛, 陈凡胜. 星上定标的观测恒星确定方法研究[J]. 中国空间科学技术, 2017, 37(3): 71-76

    ZHANG Wanying, WANG Tao, CHEN Fansheng. Research on determining methods of observed stellar in on-board radiometric calibration[J]. Chinese Space Science and Technology, 2017, 37(3): 71-76
    [14] 王誉都, 孙小进, 张恒, 等. 利用多星表交叉外推恒星能量的方法[J]. 红外与毫米波学报, 2019, 38(4): 473-478

    WANG Yudu, SUN Xiaojin, ZHANG Heng, et al. A new approach for extrapolating star flux using cross-matching multiple catalogues[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 473-478
    [15] SCHULMAN E, COX C V. Misconceptions about astronomical magnitudes[J]. American Journal of Physics, 1997, 65(10): 1003-1007 doi: 10.1119/1.18714
    [16] COCHRAN A L. Spectrophotometry with a self-scanned silicon photodiode array. II. Secondary standard stars[J]. Astrophysical Journal, 1981, 45: 83-96 doi: 10.1086/190708
    [17] BESSELL M S. Photometric systems[J]. International Astronomical Union Colloquium, 1993, 136: 22-39 doi: 10.1017/S025292110000734X
    [18] CASAGRANDE L, VANDENBERG D A. Synthetic stellar photometry – II. Testing the bolometric flux scale and tables of bolometric corrections for the Hipparcos/Tycho, Pan-STARRS1, SkyMapper, and JWST systems[J]. Monthly Notices of the Royal Astronomical Society, 2018, 475(4): 5023-5040 doi: 10.1093/mnras/sty149
    [19] MANN A W, VON BRAUN K. Revised filter profiles and zero points for broadband photometry[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(948): 102-125 doi: 10.1086/680012
    [20] BESSELL M S. The Hipparcos and Tycho photometric system passbands[J]. Publications of the Astronomical Society of the Pacific, 2000, 112(773): 961-965 doi: 10.1086/316598
    [21] BILIR S, AK S, KARAALI S, et al. Transformations between 2 MASS, SDSS and BVRI photometric systems: bridging the near-infrared and optical[J]. Monthly Notices of the Royal Astronomical Society, 2008, 384(3): 1178-1188 doi: 10.1111/j.1365-2966.2007.12783.x
    [22] APELLÁNIZ J M. A uniform set of optical/NIR photometric zero points to be used with CHORIZOS[OL]. arXiv preprint arXiv: astro-ph/0609430, 2007
    [23] ZOMBECK M V. Handbook of Space Astronomy and Astrophysics[M]. Cambridge: Cambridge University Press, 2006
    [24] BESSELL M S, CASTELLI F, PLEZ B. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O-M stars[J]. Astronomy and Astrophysics, 1998, 333: 231-250
    [25] BESSELL M, MURPHY S. Spectrophotometric libraries, revised photonic passbands, and zero points for UBVRI, Hipparcos, and Tycho photometry[J]. Publications of the Astronomical Society of the Pacific, 2012, 124(912): 140 doi: 10.1086/664083
    [26] BINNEY J, MERRIFIELD M, KING I R. Galactic astronomy[J]. Physics Today, 1999, 52(8): 64-65
    [27] HUGHES D W. The introduction of absolute magnitude (1902-1922)[J]. Journal of Astronomical History and Heritage, 2006, 9(2): 173-179 doi: 10.3724/SP.J.1440-2807.2006.02.06
    [28] JOHNSON H L. Astronomical measurements in the infrared[J]. Annual Review of Astronomy and Astrophysics, 1966, 4: 193-206 doi: 10.1146/annurev.aa.04.090166.001205
    [29] BATTAT J. Working “with magnitudes and color indices,”[J]. Hardvard Technical Note https://www.cfa..edu/~dfabricant/huchra/ay145/magnitudes.pdf (May 2005)
    [30] HANSLMEIER A. State Variables of Stars[M]//HANSLMEIER A. Introduction to Astronomy and Astrophysics. Berlin, Heidelberg: Springer, 2023: 303-335
    [31] PLANCK M. The Theory of Heat Radiation[M]. Philadelphia: Blakiston, 1914
    [32] SICHEVSKIJ S G, MIRONOV A V, MALKOV O Y. Accuracy of stellar parameters determined from multicolor photometry[J]. Astrophysical Bulletin, 2014, 69(2): 160-168 doi: 10.1134/S1990341314020035
    [33] MALKOV O, KOVALEVA D, SICHEVSKY S, et al. Statistical relations between stellar spectral and luminosity classes and stellar effective temperature and surface gravity[J]. Research in Astronomy and Astrophysics, 2020, 20(9): 139 doi: 10.1088/1674-4527/20/9/139
    [34] MICHAEL RICHMOND. Astronomical spectra, filters, and magnitudes[EB/OL].http://spiff.rit.edu/classes/phys440/ lectures/filters/filters.html.
    [35] WRIGHT E L, EISENHARDT P R M, MAINZER A K, et al. The wide-field infrared survey explorer (wise): mission description and initial on-orbit performance[J]. The Astronomical Journal, 2010, 140(6): 1868-1881 doi: 10.1088/0004-6256/140/6/1868
    [36] KLEBE D, SEBAG J, BLATHERWICK R D, et al. All-sky mid-infrared imagery to characterize sky conditions and improve astronomical observational performance[J]. Publications of the Astronomical Society of the Pacific, 2012, 124(922): 1309-1317 doi: 10.1086/668866
    [37] DAVENPORT J R A, IVEZIĆ Ž, BECKER A C, et al. The SDSS-2 MASS-WISE 10-dimensional stellar colour locus[J]. Monthly Notices of the Royal Astronomical Society, 2014, 440(4): 3430-3438 doi: 10.1093/mnras/stu466
    [38] 许春. 一种利用恒星进行遥感卫星辐射定标的方法[J]. 红外与毫米波学报, 2017, 36(5): 581-588 doi: 10.11972/j.issn.1001-9014.2017.05.012

    XU Chun. A flux calibration method for remote sensing satellites using star flux[J]. Journal of Infrared and Millimeter Waves, 2017, 36(5): 581-588 doi: 10.11972/j.issn.1001-9014.2017.05.012
    [39] 冉晓强, 汶德胜, 邱跃洪, 等. 一种新的多三角形星图识别算法[J]. 光子学报, 2009, 38(7): 1867-1871

    RAN Xiaoqiang, WEN Desheng, QIU Yuehong, et al. A novel multi-triangle star pattern recognition algorithm[J]. Acta Photonica Sinica, 2009, 38(7): 1867-1871
    [40] SHIRAHATA M, MATSUURA S, HASEGAWA S, et al. Calibration and performance of the AKARI far-infrared surveyor (FIS)—slow-scan observation mode for point-sources[J]. Publications of the Astronomical Society of Japan, 2009, 61(4): 737-750 doi: 10.1093/pasj/61.4.737
    [41] ROSHANIAN J, YAZDANI S, BEHESHT S B, et al. 2 MASS infrared star catalog data mining for use onboard a daytime star tracker[C]//2015 7 th International Conference on Recent Advances in Space Technologies (RAST). Istanbul: IEEE, 2015: 75-79
    [42] WANG W J, WEI X G, LI J, et al. Optical parameters optimization for all-time star sensor[J]. Sensors, 2019, 19(13): 2960 doi: 10.3390/s19132960
    [43] PERRYMAN M, LINDEGREN L, KOVALEVSKY J, et al. The hipparcos catalogue[J]. Astronomy and Astrophysics, 1997, 323: L49-L52
    [44] Hipparcos/Copenhagen/USNO Tycho-2 Catalog[EB/OL]. [2023-05-25]. http://tdc-www.harvard.edu/software/catalogs/tycho2.html
    [45] COLLABORATION G. VizieR online data catalog: Gaia DR2 (Gaia Collaboration, 2018)[J]. VizieR Online Data Catalog, 2018: I/345
    [46] TUCKER D L, KENT S, RICHMOND M W, et al. The Sloan Digital Sky Survey monitor telescope pipeline[J]. Astronomische Nachrichten, 2006, 327(9): 821-843 doi: 10.1002/asna.200610655
    [47] KAPLAN G H, BANGERT J, PUATUA W, et al. User’s Guide to NOVAS Version C3.0[M]. US Naval Observatory, 2009.
    [48] SKRUTSKIE M F, CUTRI R M, STIENING R, et al. The two micron all sky survey (2 MASS)[J]. The Astronomical Journal, 2006, 131(2): 1163-1183 doi: 10.1086/498708
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  325
  • PDF下载量:  47
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-04-20
  • 录用日期:  2023-06-27
  • 修回日期:  2023-05-25
  • 网络出版日期:  2023-06-27

目录

    /

    返回文章
    返回