[1] |
王俊, 夏维, 胡笑旋, 等. 基于多Agent的遥感星座自主协同任务规划[J]. 指挥与控制学报, 2021, 7(3): 287-294 doi: 10.3969/j.issn.2096-0204.2021.03.0287WANG Jun, XIA Wei, HU Xiaoxuan, et al. Autonomous cooperative mission planning for remote sensing constellation based on multi-Agent[J]. Journal of Command and Control, 2021, 7(3): 287-294 doi: 10.3969/j.issn.2096-0204.2021.03.0287
|
[2] |
XIANG M S, DENG Q C, DUAN L S, et al. Dynamic monitoring and analysis of the earthquake worst-hit area based on remote sensing[J]. Alexandria Engineering Journal, 2022, 61(11): 8691-8702 doi: 10.1016/j.aej.2022.02.001
|
[3] |
章罗娜, 马忠成, 饶建兵, 等. 低轨卫星互联网发展趋势及市场展望[J]. 国际太空, 2020(11): 28-31 doi: 10.3969/j.issn.1009-2366.2020.11.006ZHANG Luona, MA Zhongcheng, RAO Jianbing, et al. Development trend and market prospect of low-orbit satellite Internet[J]. International Space, 2020(11): 28-31 doi: 10.3969/j.issn.1009-2366.2020.11.006
|
[4] |
SINHA P K, DUTTA A. Multi-satellite task allocation algorithm for earth observation[C]//2016 IEEE Region 10 Conference. Singapore: IEEE, 2016: 403-408
|
[5] |
王冲, 景宁, 李军, 等. 一种基于多Agent强化学习的多星协同任务规划算法[J]. 国防科技大学学报, 2011, 33(1): 53-58 doi: 10.3969/j.issn.1001-2486.2011.01.012WANG Chong, JING Ning, LI Jun, et al. An algorithm of cooperative multiple satellites mission planning based on multi-agent reinforcement learning[J]. Journal of National University of Defense Technology, 2011, 33(1): 53-58 doi: 10.3969/j.issn.1001-2486.2011.01.012
|
[6] |
HUANG H, SUN C Y, HU J X, et al. Optimization design of response satellite deployment for regional target emergency observation[C]//Proceedings of 2020 International Conference on Guidance on Advances in Guidance, Navigation and Control. Tianjin: Springer, 2022: 579-591
|
[7] |
SUTTON R S, BARTO A G. Reinforcement Learning: An Introduction[M]. Cambridge: MIT Press, 1998
|
[8] |
马一凡, 赵凡宇, 王鑫, 等. 密集观测场景下的敏捷成像卫星任务规划方法[J]. 浙江大学学报(工学版), 2021, 55(6): 1215-1224 doi: 10.3785/j.issn.1008-973X.2021.06.023MA Yifan, ZHAO Fanyu, WANG Xin, et al. Agile imaging satellite task planning method for intensive observation[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(6): 1215-1224 doi: 10.3785/j.issn.1008-973X.2021.06.023
|
[9] |
周碧莹, 王爱平, 费长江, 等. 基于强化学习的卫星网络资源调度机制[J]. 计算机工程与科学, 2019, 41(12): 2134-2142 doi: 10.3969/j.issn.1007-130X.2019.12.006ZHOU Biying, WANG Aiping, FEI Changjiang, et al. A satellite network resource scheduling mechanism based on reinforcement learning[J]. Computer Engineering and Science, 2019, 41(12): 2134-2142 doi: 10.3969/j.issn.1007-130X.2019.12.006
|
[10] |
彭双, 伍江江, 陈浩, 等. 基于注意力神经网络的对地观测卫星星上自主任务规划方法[J]. 计算机科学, 2022, 49(7): 242-247 doi: 10.11896/jsjkx.210500093PENG Shuang, WU Jiangjiang, CHEN Hao, et al. Satellite onboard observation task planning based on attention neural network[J]. Computer Science, 2022, 49(7): 242-247 doi: 10.11896/jsjkx.210500093
|
[11] |
王海蛟. 基于强化学习的卫星规模化在线调度方法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2018WANG Haijiao. Massive Scheduling Method Under Online Situation for Satellites Based on Reinforcement Learning[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2018
|
[12] |
李大林. 天文观测卫星任务规划模型与方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021LI Dalin. Research on Observation Scheduling Model and Method of Astronomy Satellite[D]. Harbin: Harbin Institute of Technology, 2021
|
[13] |
LIU Y C, CHEN Q F, LI C Y, et al. Mission planning for earth observation satellite with competitive learning strategy[J]. Aerospace Science and Technology, 2021, 118: 107047 doi: 10.1016/j.ast.2021.107047
|
[14] |
吴白轩. 基于合同网协议的多星多任务规划方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020WU Baixuan. Research on Multi-star and Multitask Planning Based on Contract Network Protocol[D]. Harbin: Harbin Engineering University, 2020
|
[15] |
姜维, 庞秀丽. 组网成像卫星协同任务规划方法[M]. 哈尔滨: 哈尔滨工业大学出版社, 2016JIANG Wei, PANG Xiuli. Collaborative Mission Planning Method for Networking Imaging Satellite[M]. Harbin: Harbin Institute of Technology Press, 2016
|
[16] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[OL]. arXiv preprint arXiv: 1312.5602, 2013
|