留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下火箭推进系统液氧贮箱内气泡脱离半径研究

李文韬 黄文昊 梁国柱

李文韬, 黄文昊, 梁国柱. 微重力下火箭推进系统液氧贮箱内气泡脱离半径研究[J]. 空间科学学报, 2024, 44(1): 122-132. doi: 10.11728/cjss2024.01.2023-0003
引用本文: 李文韬, 黄文昊, 梁国柱. 微重力下火箭推进系统液氧贮箱内气泡脱离半径研究[J]. 空间科学学报, 2024, 44(1): 122-132. doi: 10.11728/cjss2024.01.2023-0003
LI Wentao, HUANG Wenhao, LIANG Guozhu. On Bubble Departure Radius in Liquid Oxygen Tank of Rocket Propulsion System under Microgravity (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 122-132 doi: 10.11728/cjss2024.01.2023-0003
Citation: LI Wentao, HUANG Wenhao, LIANG Guozhu. On Bubble Departure Radius in Liquid Oxygen Tank of Rocket Propulsion System under Microgravity (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 122-132 doi: 10.11728/cjss2024.01.2023-0003

微重力下火箭推进系统液氧贮箱内气泡脱离半径研究

doi: 10.11728/cjss2024.01.2023-0003 cstr: 32142.14.cjss2024.01.2023-0003
详细信息
    作者简介:
    • 李文韬:男, 1999年7月出生于陕西省汉中市, 现为北京航空航天大学在读博士生, 主要研究方向为微重力下气泡动力学、多物理场耦合数值仿真等. E-mail: lwt_2017@buaa.edu.cn
    通讯作者:
    • 男, 1966年3月出生于贵州省遵义市, 现为北京航空航天大学宇航学院教授, 博士生导师, 主要研究方向为运载火箭贮箱增压输送系统动力学、姿轨控发动机地面与高空模拟试验技术、火箭发动机设计/仿真/优化等. E-mail: lgz@buaa.edu.cn
  • 中图分类号: V524

On Bubble Departure Radius in Liquid Oxygen Tank of Rocket Propulsion System under Microgravity

  • 摘要: 研究微重力下液氧贮箱内气泡脱离半径是运载火箭推进系统推进剂在轨沸腾与换热计算的基础. 与常重力和低重力环境不同, 微重力下Marangoni效应变得突出. 为了求解气泡脱离半径, 构建包含浮力、惯性力、压差力、表面张力、黏性阻力和Marangoni力的气泡动力学模型. 针对现有Marangoni力计算公式适用范围狭窄的问题, 依托数值仿真方法, 拟合得到了更精确的修正因子计算公式, 进而扩充了Marangoni力计算模型的适用范围. 使用运载火箭液氧贮箱常规工作压力0.3 MPa下的饱和液氧物性参数, 计算得到气泡所受合力随半径的变化关系以及气泡脱离半径随重力的变化关系. 结果表明, 气泡的脱离行为可以由微重力区、过渡区和低重力区三个区域来划分. 微重力区内可以形成厘米级甚至米级的大气泡, 而低重力区内只能形成0.1 mm级的小气泡. 相比之前的模型, 本文模型可以同时适用于三个区, 更全面地揭示了微重力下液氧贮箱内的气泡脱离特性, 可以为液氧贮箱换热特性分析提供理论支撑.

     

  • 图  1  气泡受力分析

    Figure  1.  Force analysis of a bubble

    图  2  Marangoni力的计算公式

    Figure  2.  Formula of Marangoni force

    图  3  气泡受力的计算流程

    Figure  3.  Calculation process of the force on a bubble

    图  4  不同重力下气泡合力随气泡半径的变化(介质为水)

    Figure  4.  Change of total force with bubble radius for different gravities for water

    图  5  气泡脱离半径随重力的变化(介质为水)

    Figure  5.  Change of bubble departure radius with gravity for water

    图  6  气泡几何模型

    Figure  6.  Bubble geometry model

    图  7  网格划分结果

    Figure  7.  Meshing result

    图  8  气泡半径为10 mm时的温度场

    Figure  8.  Temperature field at the bubble radius of 10 mm

    图  9  半径为10 mm的气泡表面温度分布

    Figure  9.  Temperature distribution on the surface of the bubble at a radius of 10 mm

    图  10  马氏力修正因子随无量纲气泡半径的变化

    Figure  10.  Change of Marangoni force correction factor with dimensionless bubble radius

    图  11  马氏力修正因子拟合结果

    Figure  11.  Fitting result of Marangoni force correction factor

    图  12  气泡脱离半径与重力的关系

    Figure  12.  Relation between the bubble departure radius and gravity

    图  13  气泡所受合力随半径的变化

    Figure  13.  Change of the total force on the bubble with radius

    表  1  饱和状态下水的物性(1 atm)

    Table  1.   Physical properties of water in the saturated state (1 atm)

    参数名称 符号 数值
    液相密度/(kg·m–3) $ {\rho _{\text{l}}} $ 958.37
    气相密度/(kg·m–3) $ {\rho _{\text{g}}} $ 0.59766
    液相比热容/(kJ·kg–1·K–1) $ {c_{{\text{p,l}}}} $ 4.2156
    液相热扩散系数/ (m2·s–1) $ {a_{\text{l}}} $ 1.6808×10–7
    汽化潜热/(kJ·kg–1) $ {h_{{\text{fg}}}} $ 2256.5
    表面张力系数/(mN·m–1) $ \sigma $ 58.917
    液相动力黏度/(Pa·s) $ {\mu _{\mathrm{l}}} $ 0.00028166
    接触角[3]/(o) $ \theta $ 45
    下载: 导出CSV

    表  2  仿真边界条件

    Table  2.   Simulation boundary conditions

    编号 流体力学条件 传热学条件 说明
    a 无滑移壁面 温度 贮箱壁面
    ${\boldsymbol{u}} = 0$ $T = {T_{\text{w}}}$
    b 压力出口 绝热 仿真外边界
    $p = {p_{{\text{ref}}}} = 0$ $ \left( {{\lambda _{\text{l}}}\nabla T} \right) \cdot {\boldsymbol{n}} = 0 $
    c 滑移壁面 马氏效应 气泡表面
    ${\boldsymbol{u}} \cdot {\boldsymbol{n}} = 0$ $ \left( { - p{\boldsymbol{I}} + {\boldsymbol{\tau }}} \right){\boldsymbol{n}} = {\sigma _{\text{T}}}{\nabla _{\text{t}}}T $
    d 对称轴
    下载: 导出CSV

    表  3  饱和状态下液氧的物性(0.3 MPa)

    Table  3.   Physical properties of saturated liquid oxygen (0.3 MPa)

    参数名称 符号 数值
    液相密度/(kg·m–3) $ {\rho _{\text{l}}} $ 1080.1
    气相密度/(kg·m–3) $ {\rho _{\text{g}}} $ 12.170
    液相比热容/(kJ·kg–1·K–1) $ {c_{{\text{p,l}}}} $ 1.7487
    液相热扩散系数/(m2·s–1) $ {a_{\text{l}}} $ 7.0734×10–8
    汽化潜热/(kJ·kg–1) $ {h_{{\text{fg}}}} $ 200.20
    表面张力系数/(mN·m–1) $ \sigma $ 10.265
    液相动力黏度/(Pa·s) $ {\mu _{\mathrm{l}}} $ 0.00014552
    接触角[15]/(o) $ \theta $ 10
    温度/K $ {T_0} $ 102.2
    下载: 导出CSV

    表  4  表面张力温度系数[13]

    Table  4.   Surface tension temperature coefficient

    温度/K 表面张力系数/(mN·m–1) 表面张力温度系数/(mN·m–1·K–1)
    101 10.512 –0.24
    103 10.032
    下载: 导出CSV

    表  5  网格无关性验证

    Table  5.   Mesh independence verification

    网格序号 单元总数(×103) 气泡顶部过热度/K 相对偏差/(%)
    1 3.4 0.2978 4.42
    2 5.7 0.3024 6.03
    3 8.6 0.2911 2.07
    4 12.1 0.2852
    下载: 导出CSV

    表  6  仿真所得马氏力随气泡半径的变化

    Table  6.   Change of Marangoni force with bubble Radius obtained from simulation

    R /mm R+ 马氏力Fm/N 修正因子ξ
    0.5 0.1081 7.7174×10–8 0.0409
    1 0.2153 3.8843×10–7 0.1030
    2 0.4271 1.7431×10–6 0.2312
    5 1.0428 1.0067×10–5 0.5341
    10 2.0098 2.9000×10–5 0.7693
    20 3.7600 6.7864×10–5 0.9001
    30 5.3174 1.0660×10–4 0.9426
    50 8.0163 1.8185×10–4 0.9647
    100 13.2935 3.6385×10–4 0.9651
    150 17.4053 5.3273×10–4 0.9421
    200 20.8566 6.9017×10–4 0.9154
    300 26.5871 9.8190×10–4 0.8682
    400 31.3604 1.2557×10–3 0.8327
    500 35.5285 1.5211×10–3 0.8070
    下载: 导出CSV
  • [1] ZHANG N, CHAO D F. Models for enhanced boiling heat transfer by unusual Marangoni effects under microgravity conditions[J]. International Communications in Heat and Mass Transfer, 1999, 26(8): 1081-1090 doi: 10.1016/S0735-1933(99)00099-8
    [2] YAN Chunjie, ZHENG Yongyu, Yang Qi, et al. Deformation characteristics of gas-liquid interface in cryogenic propellant tank under microgravity environment[J]. Vacuum and Cryogenics, 2022, 28(3): 285-290 doi: 10.3969/j.issn.1006-7086.2022.03.006
    [3] KARRI S R. Dynamics of bubble departure in microgravity[J]. Chemical Engineering Communications, 1988, 70(1): 127-135 doi: 10.1080/00986448808940623
    [4] SIEGEL R, KESHOCK E G. Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water[J]. Aiche Journal, 1964, 10(4): 509-517 doi: 10.1002/aic.690100419
    [5] YOUNG N O, GOLDSTEIN J S, BLOCK M J. The motion of bubbles in a vertical temperature gradient[J]. Journal of Fluid Mechanics, 1959, 6(3): 350-356 doi: 10.1017/S0022112059000684
    [6] LIU Gang, ZHAO Jianfu, WAN Shixin, et al. Bubble departure diameter in microgravity pool boiling[J]. Journal of Engineering Thermophysics, 2008, 29(1): 93-95
    [7] ZHANG Y, WEI J, XUE Y, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity[J]. Applied Thermal Engineering, 2014, 70: 172-182 doi: 10.1016/j.applthermaleng.2014.04.074
    [8] MA Yuan, SUN Peijie, LI Peng, et al. Investigation on the boiling bubble departure behavior of cryogenic fluid in microgravity[J]. Journal of Xi'an Jiaotong University, 2018, 52(9): 89-94
    [9] 易天浩, 陈超越, 雷作胜, 等. 微重力池沸腾中的气泡和传热行为数值模拟[J]. 空间科学学报, 2019, 39(4): 469-477 doi: 10.11728/cjss2019.04.469

    YI Tianhao, CHEN Chaoyue, LEI Zuosheng, et al. Numerical simulation of bubble dynamics and heat transfer during pool boiling in microgravity[J]. Chinese Journal of Space Science, 2019, 39(4): 469-477 doi: 10.11728/cjss2019.04.469
    [10] BEER H, BORROW P, BEST R. Nucleate boiling: bubble growth and dynamics[M]// Hahne E. Heat Transfer in Boiling. New York: Academic Press, 1977: 21-52
    [11] MIKIC B B, ROHSENOW W M, GRIFFITH P. On bubble growth rates[J]. International Journal of Heat and Mass Transfer, 1970, 13(4): 657-666 doi: 10.1016/0017-9310(70)90040-2
    [12] WAGNER W, PRUß A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. Journal of Physical and Chemical Reference Data, 2002, 31(2): 387-535 doi: 10.1063/1.1461829
    [13] LEMMON E W, BELL I H, HUBER M L, et al. NIST standard reference database 23: reference fluid thermodynamic and transport properties-refprop, version 10.0 [EB/OL]. (2022-01-27)[2022-05-31]. https://doi.org/10.18434/T4/1502528
    [14] STRAUB J. Boiling Heat Transfer and Bubble Dynamics in Microgravity[M]. Advances in Heat Transfer, Amsterdam: Elsevier, 2001: 35, 57-172
    [15] LI Z, ZHU Z, LIU Q, et al. Simulating propellant reorientation of vehicle upper stage in microgravity environment[J]. Microgravity Science and Technology, 2013, 25(4): 237-241 doi: 10.1007/s12217-013-9351-z
    [16] YANG Shiming, Tao Wenquan. Numerical Heat Transfer[M]. 2nd ed. Beijing: Higher Education Press, 2001
    [17] STEWART R B, JACOBSEN R T, WAGNER W. Thermodynamic properties of oxygen from the triple point to 300 K with pressures to 80 MPa[J]. Journal of Physical and Chemical Reference Data, 1991, 20(5): 917-1021 doi: 10.1063/1.555897
    [18] LEE D J. Bubble departure radius under microgravity[J]. Chemical Engineering Communications, 1992, 117(1): 175-189 doi: 10.1080/00986449208936065
    [19] LI Jing, ZHAO Jianfu, YAN Na, et al. Bubble behavior in microgravity pool boiling[J]. Journal of Engineering Thermophysics, 2008(3): 439-442
    [20] ZHENG Yao, CHANG Huawei, CHEN Hong, et al. Bubble departure characteristics during liquid hydrogen flow boiling under microgravity[J]. Journal of Central South University (Science and Technology), 2021, 52(5): 1666-1672
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  142
  • PDF下载量:  66
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-01-03
  • 录用日期:  2024-01-29
  • 修回日期:  2023-02-05
  • 网络出版日期:  2023-03-10

目录

    /

    返回文章
    返回