留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Automatic Generation of Artificial Space Weather Forecast Product Based on Sequence-to-sequence Model

LUO Guanting ZOU Yenan CAI Yanxia

LUO Guanting, ZOU Yenan, CAI Yanxia. Automatic Generation of Artificial Space Weather Forecast Product Based on Sequence-to-sequence Model. Chinese Journal of Space Science, 2024, 44(1): 80-94 doi: 10.11728/cjss2024.01.2023-0029
Citation: LUO Guanting, ZOU Yenan, CAI Yanxia. Automatic Generation of Artificial Space Weather Forecast Product Based on Sequence-to-sequence Model. Chinese Journal of Space Science, 2024, 44(1): 80-94 doi: 10.11728/cjss2024.01.2023-0029

Automatic Generation of Artificial Space Weather Forecast Product Based on Sequence-to-sequence Model

doi: 10.11728/cjss2024.01.2023-0029 cstr: 32142.14.cjss2024.01.2023-0029
Funds: Supported by the Key Research Program of the Chinese Academy of Sciences (ZDRE-KT-2021-3)
  • Figure  1.  Description of the experimentation

    Figure  2.  GOES X-ray flux during 21:00 UT from 16 to 18 February 2023

    Figure  3.  GOES SEM Proton flux during 21:00 UT from 23 to 30 September 2021

    Figure  4.  Flow chart of our automatic time sequence down-sampling algorithm

    Figure  5.  Result of the univariate experiment for exploring the appropriate target length on down-sampling

    Figure  6.  Proton flux from 21:00 UT 10 to 11 January 2002

    Figure  7.  Framework of MDH model

    Figure  8.  Structure of the BART model (Serialized inputs consist of solar activity level, flare events and active regions)

    Figure  9.  Structure of the Transformer model (This model takes attribution and 3-hour planetary K-index as inputs for generating geomagnetic storm event summary)

    Figure  10.  Distribution of human evaluation scores. Each stacked column represents the human score of a test sample

    Table  1.   Taxonomy of space weather phenomena, separating space weather phenomena into three domains

    DomainTypical phenomena
    Short-termFlares and solar active regions, sudden impulses, solar wind,
    ≥2 MeV electron flux
    Long-term≥10 MeV proton events, forbush decrease events
    Causal relationshipGeomagnetic storms caused by high-speed coronal hole stream
    下载: 导出CSV

    Table  2.   Features of flare events and solar active regions

    Input features Details
    Solar active regions Solar active regions in the past 24 h, containing area, evolution, serial number, coordinates
    Flares Flare records in the past 24 h, containing grade, duration, peak time, serial number, and coordinate of the source region
    下载: 导出CSV

    Table  3.   Features of greater than 10 MeV proton events

    Input features Details
    ≥10 MeV proton flux GOES proton flux 5-minute data in the past 24 h
    Proton event record Last proton event record, containing beginning time, peak flux, peak time, end time (if ended)
    下载: 导出CSV

    Table  4.   Features of geomagnetic storm events

    Input featuresDetails
    Planetary K-indexEstimated planetary K-index 3-hour data in last 24 h
    AttributionAn integer value: 1 stands for high-speed coronal hole stream is the source of the event
         0 stands for not unrelated to any high-speed coronal hole stream
    下载: 导出CSV

    Table  5.   Descriptors of proton event trend patterns

    PatternTrend descriptors
    Increaseincrease, rise, exceed
    Decreasedecrease, decline, decay, drop
    下载: 导出CSV

    Table  6.   Decision rules of solar activity level in the past 24 h

    Flare Activity level
    No flare is higher than B grade Very low
    Highest flare is at C grade Low
    Number of flares at M1.0~M4.9 is between 1~4, and there is no flare higher than M4.9 Moderate
    Number of flares at M1.0~M4.9 is over 4, or there is a flare over M4.9 High
    下载: 导出CSV

    Table  7.   Results of automatic evaluation

    Task ROUGE-1 ROUGE-L BLEU
    Flares and solar active regions 38.69 36.60 33.01
    ≥10 MeV proton events 96.32 96.20 96.13
    Geomagnetic storm events 79.63 83.73 76.93
    下载: 导出CSV

    Table  8.   Result of minor solar activities’ ablation

    Minor solar activities ROUGE-1 ROUGE-L BLEU
    With 38.69 36.60 33.01
    Without 64.11 61.29 61.61
    下载: 导出CSV

    Table  9.   Results of human evaluation

    TaskAccuracyCoverageSentence lengthScore
    Flares and solar active regions89.3477.9577.7582.47
    ≥10 MeV proton events96.6793.3382.9792.59
    Geomagnetic storm events100.00100.0084.4696.89
    下载: 导出CSV

    Table  10.   Confusion matrix of ≥10 MeV proton events summaries

    Observed positiveObserved negative
    Described positive80
    Described negative022
    下载: 导出CSV

    Table  11.   Comprehensive scores

    TaskComprehensive score
    Flares and solar active regions70.87
    ≥10 MeV proton events93.50
    Geomagnetic storm events92.69
    下载: 导出CSV
  • [1] LILENSTEN J, BELEHAKI A. Developing the scientific basis for monitoring, modelling and predicting space weather[J]. Acta Geophysica, 2009, 57(1): 1-14 doi: 10.2478/s11600-008-0081-3
    [2] SINGH A K, BHARGAWA A, SIINGH D, et al. Physics of space weather phenomena: a review[J]. Geosciences, 2021, 11(7): 286 doi: 10.3390/geosciences11070286
    [3] GOLDBERG E, DRIEDGER N, KITTREDGE R I. Using natural-language processing to produce weather forecasts[J]. IEEE Expert, 1994, 9(2): 45-53 doi: 10.1109/64.294135
    [4] REITER E, SRIPADA S G, HUNTER J, et al. Choosing words in computer-generated weather forecasts[J]. Artificial Intelligence, 2005, 167(1/2): 137-169
    [5] XING X Y, WAN X J. Structure-aware pre-training for table-to-text generation[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Online: Association for Computational Linguistics, 2021: 2273-2278
    [6] MEI H Y, BANSAL M, WALTER M R. What to talk about and how? Selective generation using LSTMs with coarse-to-fine alignment[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: NAACL, 2016: 720-730
    [7] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego: Computational and Biological Learning Society, 2015
    [8] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [9] GU J T, LU Z D, LI H, et al. Incorporating copying mechanism in sequence-to-sequence learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin: Association for Computational Linguistics, 2016: 1631-1640
    [10] WISEMAN S, SHIEBER S M, RUSH A M. Challenges in data-to-document generation[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 2253-2263
    [11] MA S M, YANG P C, LIU T Y, et al. Key fact as pivot: a two-stage model for low resource table-to-text generation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019: 2047-2057
    [12] GONG H, SUN Y W, FENG X C, et al. TableGPT: few-shot table-to-text generation with table structure reconstruction and content matching[C]//Proceedings of the 28th International Conference on Computational Linguistics. Barcelona: International Committee on Computational Linguistics, 2020: 1978-1988
    [13] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[OL]. [2019-02-15]. http://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
    [14] SU Y X, MENG Z Q, BAKER S, et al. Few-shot table-to-text generation with prototype memory[C]//Findings of the Association for Computational Linguistics: EMNLP 2021. Punta Cana: Association for Computational Linguistics, 2021: 910-917
    [15] BU X, LUO B, SHEN C, et al. Forecasting high‐speed solar wind streams based on solar extreme ultraviolet images[J]. Space Weather, 2019, 17(7): 1040-1058 doi: 10.1029/2019SW002186
    [16] HOSSEINI-ASL E, MCCANN B, WU C S, et al. A simple language model for task-oriented dialogue[C]//Proceedings of the 34th Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020: 20179-20191
    [17] ARUN A, BATRA S, BHARDWAJ V, et al. Best practices for data-efficient modeling in NLG: how to train production-ready neural models with less data[C]//Proceedings of the 28th International Conference on Computational Linguistics: Industry Track. Online: International Committee on Computational Linguistics, 2020: 64-77
    [18] HE J X, KRYŚCIŃSKI W, MCCANN B, et al. CTRLsum: towards generic controllable text summarization[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Abu Dhabi: Association for Computational Linguistics, 2022: 5879-5915
    [19] LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020: 7871-7880
    [20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 6000-6010
    [21] RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 140
    [22] ROTHE S, NARAYAN S, SEVERYN A. Leveraging pre-trained checkpoints for sequence generation tasks[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 264-280 doi: 10.1162/tacl_a_00313
    [23] RUMELHART D E, DURBIN R, GOLDEN R, et al. Backpropagation: the basic theory[M]//CHAUVIN Y, RUMELHART D E. Backpropagation: Theory, Architectures, and Applications. Hillsdale: Lawrence Erlbaum Associates, 1995: 1-34
    [24] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations. San Diego: Computational and Biological Learning Society, 2015
    [25] HOLTZMAN A, BUYS J, DU L, et al. The curious case of neural text degeneration[C]//8th International Conference on Learning Representations. Addis Ababa: OpenReview. net, 2020
    [26] CELIKYILMAZ A, CLARK E, GAO J F. Evaluation of text generation: a survey[OL]. arXiv preprint arXiv: 2006.14799, 2020
    [27] LIN C Y. ROUGE: a package for automatic evaluation of summaries[C]//Text Summarization Branches Out. Barcelona: Association for Computational Linguistics, 2004: 74-81
    [28] PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Philadelphia: ACM, 2002: 311-318
    [29] CASCALLAR-FUENTES A, RAMOS-SOTO A, BUGARÍN A. Meta-heuristics for generation of linguistic descriptions of weather data: experimental comparison of two approaches[J]. Fuzzy Sets and Systems, 2022, 443: 173-202 doi: 10.1016/j.fss.2022.02.016
    [30] CHEN Z Y, EAVANI H, CHEN W H, et al. Few-shot NLG with pre-trained language model[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020: 183-190
    [31] LI L, MA C, YUE Y L, et al. Improving encoder by auxiliary supervision tasks for table-to-text generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Bangkok: Association for Computational Linguistics, 2021: 5979-5989
    [32] VAN DER LEE C, GATT A, VAN MILTENBURG E, et al. Best practices for the human evaluation of automatically generated text[C]//Proceedings of the 12th International Conference on Natural Language Generation. Tokyo: Association for Computational Linguistics, 2019: 355-368
  • 加载中
图(10) / 表(11)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  115
  • PDF下载量:  50
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-04-19
  • 网络出版日期:  2023-07-27

目录

    /

    返回文章
    返回