留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喉区极光过程中的能量输入估算

范天舒 曹永军 邱荟璇 王智伟 韩德胜

范天舒, 曹永军, 邱荟璇, 王智伟, 韩德胜. 喉区极光过程中的能量输入估算[J]. 空间科学学报, 2024, 44(1): 51-59. doi: 10.11728/cjss2024.01.2023-0065
引用本文: 范天舒, 曹永军, 邱荟璇, 王智伟, 韩德胜. 喉区极光过程中的能量输入估算[J]. 空间科学学报, 2024, 44(1): 51-59. doi: 10.11728/cjss2024.01.2023-0065
FAN Tianshu, CAO Yongjun, QIU Huixuan, WANG Zhiwei, HAN Desheng. Estimation of Energy Input during Throat Aurora Processes (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 51-59 doi: 10.11728/cjss2024.01.2023-0065
Citation: FAN Tianshu, CAO Yongjun, QIU Huixuan, WANG Zhiwei, HAN Desheng. Estimation of Energy Input during Throat Aurora Processes (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 51-59 doi: 10.11728/cjss2024.01.2023-0065

喉区极光过程中的能量输入估算

doi: 10.11728/cjss2024.01.2023-0065 cstr: 32142.14.cjss2024.01.2023-0065
基金项目: 国家自然科学基金项目(42030101)和内蒙古师范大学基本科研业务费专项资金项目(2022JBTD008)共同资助
详细信息
    作者简介:
    • 范天舒:男, 1998年1月出生于内蒙古巴彦淖尔. 内蒙古师范大学硕士研究生, 主要研究方向为磁层物理. E-mail: a1361318457@163.com
    通讯作者:
    • 男, 1975年7月出生. 内蒙古师范大学教授, 博士生导师, 主要从事人工微结构复合材料物理及数学物理问题的数值计算研究. E-mail: phyicao@imnu.edu.cn
    • 男, 1973年7月出生. 同济大学海洋与地球科学学院教授, 主要研究方向为极光科学. E-mail: handesheng@tongji.edu.cn
  • 中图分类号: P353

Estimation of Energy Input during Throat Aurora Processes

  • 摘要: 喉区极光是一种只发生在磁正午附近的特殊分立极光, 具有明显的从分立极光卵赤道侧边界向低纬延伸的特征. 已有研究表明, 喉区极光对应于一种由磁重联导致的磁层顶局地凹陷. 磁重联是太阳风能量注入到地球磁层空间的重要方式之一, 但伴随喉区极光过程有多少能量传输进入电离层尚不明确. 利用2015年12月的地基全天空极光观测与经过电离层上方的卫星粒子共轭观测, 建立了极光强度与沉降电子能通量之间的相关关系. 在此基础上, 针对发生在2015年12月8日的一个典型喉区极光事件, 在综合考虑持续时间与空间尺度基础上, 估算出伴随该事件由电子携带的输入到电离层的总能量约为$ 1.07\times {10}^{11}\;\mathrm{J} $, 单位面积输入能量的平均功率约为$ 1.31\times {10}^{-4}\;\mathrm{W}\cdot {\mathrm{m}}^{-2} $, 对比以往研究中MHD模拟给出的通常情况下极隙区能量输入结果, 本文给出的喉区极光过程中能量输入的效率约为MHD模拟结果的两倍, 表明伴随喉区极光过程的能量输入非常可观, 可能引起局地空间天气效应.

     

  • 图  1  2015年12月13日12:32:10 UT地面极光观测和12:31:00 UT-12:33:30 UT时段的DMSP卫星粒子观测. DMSP卫星运动轨迹(黄线)叠加在地面极光观测中

    Figure  1.  Ground auroral observations happened on 13 December 2015 at 12:32:40 UT and DMSP-Satellite particle observations between 12:31:00 UT and 12:33:30 UT. The track of DMSP-Satellite is showed by yellow line on the ground auroral observations

    图  2  DMSP观测到的沉降电子能通量(a)及对应卫星位置的极光强度(b)

    Figure  2.  Pseudo-color image that energy flux of electronic precipition observed by DMSP-Satellite (a) and aurora intensity value corresponding to satellite position (b)

    图  3  有效事件筛选准则. (a)不清晰极光事件. (b)干扰极光事件. (c)复杂极光事件. (d)理想的有效样本事件

    Figure  3.  Effective event filtering diagram. (a) Unclear aurora events. (b) Disturbed aurora events. (c) Complex aurora events. (d) Ideal aurora events

    图  4  极光强度–电子能通量有效对应点的散点图与拟合函数曲线(散点即为表1给出的有效对应点)

    Figure  4.  Scatter plot and fitting function curve of effective corresponding points of the auroral intensity and electron energy flux (the scatter point is the effective corresponding point given in Table 1 )

    图  5  2015年12月8日10:06:10 UT, 10:06:30 UT和10:06:50 UT的喉区极光结构

    Figure  5.  Schematic diagram of the throat aurora at 10:06:10 UT, 10:06:30 UT, and 10:06:50 UT on 8 December 2015

    图  6  喉区极光样本事件的ASI观测. (a) ASI观测. (b)经度定标图. (c) 纬度定标图. 其中定标图原点表示图像中心, 整个ASI像素映射在–1~1的归一化网格点中

    Figure  6.  ASI observation of sample event of throat aurora. (a) The image of ASI observation. (b) Pseudo-color image for longitude calibration. (c) Pseudo-color image for latitude calibration. The origin of the calibration map represents the image center, the whole ASI pixel is mapped in the normalized grid point of –1~1

    图  7  像素面积与实际面积的对应方法. (a)极光事件俯视概念. (b)极光事件侧视概念. (c)所求像素面积

    Figure  7.  Schematic diagram of the corresponding method between pixel area and actual area. (a) Aurora event overhead concept map. (b) Aurora event lateral concept map. (c) Pixel area diagram

    图  8  在一个喉区极光示例中随时间($ T $)变化的能量($ E $)输入情况

    Figure  8.  Energy input ($ E $) over time ($ T $) of sample event of throat aurora

    表  1  2015年12月数据得到的全部有效对应点以及相关参数信息

    Table  1.   Sample event data selected according to the criteria in December 2015

    No. Satellite Date UT Electron energy flux / ($ \mathrm{e}\mathrm{V} \cdot {\mathrm{c}\mathrm{m}}^{-2} \cdot {\mathrm{s}}^{-1} $) Auroral intensity / R
    1 F17 13 Dec. 2015 12:32:40 $ 2.939\times {10}^{11} $ 1415
    2 F17 13 Dec. 2015 12:33:00 $ 2.607\times {10}^{11} $ 982
    3 F17 14 Dec. 2015 13:59:20 $ 1.971\times {10}^{11} $ 944
    4 F17 15 Dec. 2015 12:05:30 $ 2.250\times {10}^{11} $ 824
    5 F17 16 Dec. 2015 11:53:10 $ 1.036\times {10}^{11} $ 489
    6 F17 16 Dec. 2015 11:53:20 $ 1.788\times {10}^{10} $ 498
    7 F17 16 Dec. 2015 11:53:40 $ 7.662\times {10}^{10} $ 533
    8 F17 16 Dec. 2015 11:53:50 $ 4.121\times {10}^{10} $ 546
    9 F18 13 Dec. 2015 10:56:00 $ 2.384\times {10}^{11} $ 1387
    下载: 导出CSV
  • [1] CHAPMAN S, FERRARO V C A. A new theory of magnetic storms[J]. Nature, 1930, 126(3169): 129-130 doi: 10.1038/126129a0
    [2] AXFORD W I, HINES C O. A unifying theory of high-latitude geophysical phenomena and geomagnetic storms[J]. Canadian Journal of Physics, 1961, 39(10): 1433-1464 doi: 10.1139/p61-172
    [3] BIRN J, DRAKE J F, SHAY M A, et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A3): 3715-3719 doi: 10.1029/1999JA900449
    [4] SANDHOLT P E, FARRUGIA C J, MOEN J, et al. A classification of dayside auroral forms and activities as a function of interplanetary magnetic field orientation[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A10): 23325-23345 doi: 10.1029/98JA02156
    [5] 韩德胜, 胡泽骏, 陈相材, 等. 基于北极黄河站观测的日侧极光研究新进展[J]. 极地研究, 2018, 30(3): 235-250 doi: 10.13679/j.jdyj.20180020

    HAN Desheng, HU Zejun, CHEN Xiangcai, et al. Recent results obtained from dayside optical auroral observations at Yellow River station[J]. Chinese Journal of Polar Research, 2018, 30(3): 235-250 doi: 10.13679/j.jdyj.20180020
    [6] MENG C I, MAUK B, MCILWAIN C E. Electron precipitation of evening diffuse aurora and its conjugate electron fluxes near the magnetospheric equator[J]. Journal of Geophysical Research: Space Physics, 1979, 84(A6): 2545-2558 doi: 10.1029/JA084iA06p02545
    [7] LOCKWOOD M. Relationship of dayside auroral precipitations to the open‐closed separatrix and the pattern of convective flow[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A8): 17475-17487 doi: 10.1029/97JA01100
    [8] MENDE S B, FREY H U, ANGELOPOULOS V. Source of the dayside cusp aurora[J]. Journal of Geophysical Research: Space Physics, 2016, 121(8): 7728-7738 doi: 10.1002/2016JA022657
    [9] SHI R, LIANG J, HU Z J, et al. The potential role of modified electron acoustic wave and nonlinear mode coupling in mono-energetic aurora[J]. Geophysical Research Letters, 2023, 50(9): e2022GL102680 doi: 10.1029/2022GL102680
    [10] FELDSTEIN Y I, ELPHINSTONE R D. Aurorae and the large-scale structure of the magnetosphere[J]. Journal of Geomagnetism and Geoelectricity, 1992, 44(12): 1159-1174 doi: 10.5636/jgg.44.1159
    [11] HAN D S, CHEN X C, LIU J J, et al. An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station[J]. Journal of Geophysical Research: Space Physics, 2015, 120(9): 7447-7465 doi: 10.1002/2015JA021699
    [12] HAN D S, LIU J J, CHEN X C, et al. Direct evidence for throat aurora being the ionospheric signature of magnetopause transient and reflecting localized magnetopause indentations[J]. Journal of Geophysical Research: Space Physics, 2018, 123(4): 2658-2667 doi: 10.1002/2017JA024945
    [13] QIU H X, HAN D S, WANG B Y, et al. In situ observation of a magnetopause indentation that is correspondent to throat aurora and is caused by magnetopause reconnection[J]. Geophysical Research Letters, 2022, 49(15): e2022GL099408 doi: 10.1029/2022GL099408
    [14] HAN D S. Ionospheric polarization electric field guiding magnetopause reconnection: a conceptual model of throat aurora[J]. Science China Earth Sciences, 2019, 62(12): 2099-2105 doi: 10.1007/s11430-019-9358-8
    [15] HAN D S, HIETALA H, CHEN X C, et al. Observational properties of dayside throat aurora and implications on the possible generation mechanisms[J]. Journal of Geophysical Research: Space Physics, 2017, 122(2): 1853-1870 doi: 10.1002/2016JA023394
    [16] 韩德胜, 邱荟璇, 石润. 喉区极光模型再考[J]. 地球与行星物理论评, 2022, 53(5): 605-612 doi: 10.19975/j.dqyxx.2022-036

    HAN Desheng, QIU Huixuan, SHI Run. Reconsideration on the concept model of throat aurora[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(5): 605-612 doi: 10.19975/j.dqyxx.2022-036
    [17] 李国君. 基于ASI的地球极隙区电离层投影边界定位与建模[D]. 西安: 西安电子科技大学, 2021

    LI Guojun. Location and Modeling of the Ionospheric Projection Boundary of Earth’s Cusp Region Based on ASI[D]. Xi’an: Xidian University, 2021
    [18] 丘琪, 杨惠根, 陆全明, 等. 日侧极光弧的发光强度与沉降电子能谱的相关关系[J]. 地球物理学报, 2017, 60(2): 489-498 doi: 10.6038/cjg20170204

    QIU Qi, YANG Huigen, LU Quanming, et al. Correlation between emission intensities in dayside auroral arcs and precipitating electron spectra[J]. Chinese Journal of Geophysics, 2017, 60(2): 489-498 doi: 10.6038/cjg20170204
    [19] LU J, ZHANG H X, WANG M, et al. Energy transfer across the magnetopause under radial IMF conditions[J]. The Astrophysical Journal, 2021, 920(1): 52 doi: 10.3847/1538-4357/ac15f4
    [20] CHEN X C, HAN D S, LORENTZEN D A, et al. Dynamic properties of throat aurora revealed by simultaneous ground and satellite observations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(3): 3469-3486 doi: 10.1002/2016JA023033
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  110
  • PDF下载量:  73
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-06-11
  • 修回日期:  2023-08-01
  • 网络出版日期:  2023-09-25

目录

    /

    返回文章
    返回