[1] |
MAYOR M, QUELOZ D. A Jupiter-mass companion to a solar-type star[J]. Nature, 1995, 378(6555): 355-359 doi: 10.1038/378355a0
|
[2] |
中国学科及前沿领域发展战略研究(2021-2035)项目组. 中国天文学2035发展战略[M]. 北京: 科学出版社, 2023The Project Team of Research on Development Strategies of Chinese Disciplines and Frontiers (2021-2035). Development Strategy of Chinese Astronomy 2035[M]. Beijing: Science Press, 2023
|
[3] |
National Academies of Sciences, Engineering, and Medicine. Pathways to Discovery in Astronomy and Astrophysics for the 2020s[M]. Washington: The National Academies Press, 2021
|
[4] |
FAVATA F, HASINGER G, TACCONI L J, et al. Introducing the Voyage 2050 White Papers, contributions from the science community to ESA’s long-term plan for the Scientific Programme[J]. Experimental Astronomy, 2021, 51(3): 551-558 doi: 10.1007/s10686-021-09746-4
|
[5] |
CHARBONNEAU D, BROWN T M, NOYES R W, et al. Detection of an extrasolar planet atmosphere[J]. The Astrophysical Journal, 2002, 568(1): 377-384 doi: 10.1086/338770
|
[6] |
SWAIN M R, VASISHT G, TINETTI G. The presence of methane in the atmosphere of an extrasolar planet[J]. Nature, 2008, 452(7185): 329-331 doi: 10.1038/nature06823
|
[7] |
KREIDBERG L, BEAN J L, DÉSERT J M, et al. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b[J]. Nature, 2014, 505(7481): 69-72 doi: 10.1038/nature12888
|
[8] |
SWAIN M R, ESTRELA R, ROUDIER G M, et al. Detection of an atmosphere on a rocky exoplanet[J]. The Astronomical Journal, 2021, 161(5): 213 doi: 10.3847/1538-3881/abe879
|
[9] |
HARRINGTON J, HANSEN B M, LUSZCZ S H, et al. The phase-dependent infrared brightness of the extrasolar planet ʊ Andromedae b[J]. Science, 2006, 314(5799): 623-626 doi: 10.1126/science.1133904
|
[10] |
TINETTI G, VIDAL-MADJAR A, LIANG M C, et al. Water vapour in the atmosphere of a transiting extrasolar planet[J]. Nature, 2007, 448(7150): 169-171 doi: 10.1038/nature06002
|
[11] |
GRILLMAIR C J, BURROWS A, CHARBONNEAU D, et al. Strong water absorption in the dayside emission spectrum of the planet HD 189733 b[J]. Nature, 2008, 456(7223): 767-769 doi: 10.1038/nature07574
|
[12] |
KREIDBERG L, KOLL D D B, MORLEY C, et al. Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844 b[J]. Nature, 2019, 573(7772): 87-90 doi: 10.1038/s41586-019-1497-4
|
[13] |
LÉGER A, ROUAN D, SCHNEIDER J, et al. Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7 b: the first super-Earth with measured radius[J]. Astronomy & Astrophysics, 2009, 506(1): 287-302
|
[14] |
BORUCKI W J, KOCH D, BASRI G, et al. Kepler planet-detection mission: introduction and first results[J]. Science, 2010, 327(5968): 977-980 doi: 10.1126/science.1185402
|
[15] |
Gaia Collaboration, PRUSTI T, DE BRUIJNE J H J, et al. The Gaia mission[J]. Astronomy & Astrophysics, 2016, 595: A1
|
[16] |
Gaia Collaboration, BROWN A G A, VALLENARI A, et al. Gaia data release 1. Summary of the astrometric, photometric, and survey properties[J]. Astronomy & Astrophysics, 2016, 595 : A2
|
[17] |
Gaia Collaboration, BROWN A G A, VALLENARI A, et al. Gaia early data release 3. Summary of the contents and survey properties[J]. Astronomy & Astrophysics, 2021, 649 : A1
|
[18] |
Gaia Collaboration, ARENOU F, BABUSIAUX C, et al. Gaia data release 3: stellar multiplicity, a teaser for the hidden treasure[J]. Astronomy & Astrophysics, 2023, 674 : A34
|
[19] |
HOLL B, SOZZETTI A, SAHLMANN J, et al. Gaia data release 3. Astrometric orbit determination with Markov chain Monte Carlo and genetic algorithms: systems with stellar, sub-stellar, and planetary mass companions[J]. Astronomy & Astrophysics, 2023, 674 : A10
|
[20] |
PERRYMAN M, HARTMAN J, BAKOS G Á, et al. Astrometric exoplanet detection with Gaia[J]. The Astrophysical Journal, 2014, 797(1): 14 doi: 10.1088/0004-637X/797/1/14
|
[21] |
HENRY G W, MARCY G W, BUTLER R P, et al. A transiting “51 Peg-like” planet[J]. The Astrophysical Jour nal, 2000, 529(1): L41-L44 doi: 10.1086/312458
|
[22] |
CHARBONNEAU D, BROWN T M, LATHAM D W, et al. Detection of planetary transits across a sun-like star[J]. The Astrophysical Journal, 2000, 529(1): L45-L48 doi: 10.1086/312457
|
[23] |
VIDAL-MADJAR A, DES ETANGS A L, DÉSERT J M, et al. An extended upper atmosphere around the extrasolar planet HD 209458 b[J]. Nature, 2003, 422(6928): 143-146 doi: 10.1038/nature01448
|
[24] |
BOND I A, UDALSKI A, JAROSZYŃSKI M, et al. OGLE 2003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event[J]. The Astrophysical Journal, 2004, 606(2): L155-L158 doi: 10.1086/420928
|
[25] |
GOULD A, UDALSKI A, AN D, et al. Microlens OGLE-2005-BLG-169 implies that cool Neptune-like planets are common[J]. The Astrophysical Journal, 2006, 644(1): L37-L40 doi: 10.1086/505421
|
[26] |
GOULD A, DONG S B, GAUDI B S, et al. Frequency of solar-like systems and of ice and gas giants beyond the snow line from high-magnification microlensing events in 2005-2008[J]. The Astrophysical Journal, 2010, 720(2): 1073-1089 doi: 10.1088/0004-637X/720/2/1073
|
[27] |
MRÓZ P, UDALSKI A, SKOWRON J, et al. No large population of unbound or wide-orbit Jupiter-mass planets[J]. Nature, 2017, 548(7666): 183-186 doi: 10.1038/nature23276
|
[28] |
MRÓZ P, RYU Y H, SKOWRON J, et al. A Neptune-mass free-floating planet candidate discovered by microlensing surveys[J]. The Astronomical Journal, 2018, 155(3): 121 doi: 10.3847/1538-3881/aaaae9
|
[29] |
BUTLER R P, VOGT S S, MARCY G W, et al. A Neptune-mass planet orbiting the nearby M dwarf GJ 436[J]. The Astrophysical Journal, 2004, 617(1): 580-588 doi: 10.1086/425173
|
[30] |
MCARTHUR B E, ENDL M, COCHRAN W D, et al. Detection of a Neptune-mass planet in the ρ1 cancri system using the hobby-eberly telescope[J]. The Astrophysical Journal, 2004, 614(1): L81-L84 doi: 10.1086/425561
|
[31] |
KNUTSON H A, CHARBONNEAU D, ALLEN L E, et al. A map of the day-night contrast of the extrasolar planet HD 189733 b[J]. Nature, 2007, 447(7141): 183-186 doi: 10.1038/nature05782
|
[32] |
MAROIS C, MACINTOSH B, BARMAN T, et al. Direct imaging of multiple planets orbiting the star HR 8799[J]. Science, 2008, 322(5906): 1348-1352 doi: 10.1126/science.1166585
|
[33] |
MAROIS C, ZUCKERMAN B, KONOPACKY Q M, et al. Images of a fourth planet orbiting HR 8799[J]. Nature, 2010, 468(7327): 1080-1083 doi: 10.1038/nature09684
|
[34] |
SERABYN E, MAWET D, BURRUSS R. An image of an exoplanet separated by two diffraction beamwidths from a star[J]. Nature, 2010, 464(7291): 1018-1020 doi: 10.1038/nature09007
|
[35] |
HOWARD A W, MARCY G W, BRYSON S T, et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler[J]. The Astrophysical Journal Supplement Series, 2012, 201(2): 15 doi: 10.1088/0067-0049/201/2/15
|
[36] |
DONG S B, ZHU Z H. Fast rise of “Neptune-size” planets (4-8 R⊕) from P ~ 10 to ~250 days—statistics of Kepler planet candidates up to ~0.75 AU[J]. The Astrophysical Journal, 2013, 778(1): 53 doi: 10.1088/0004-637X/778/1/53
|
[37] |
PETIGURA E A, HOWARD A W, MARCY G W. Prevalence of Earth-size planets orbiting Sun-like stars[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(48): 19273-19278
|
[38] |
FRESSIN F, TORRES G, CHARBONNEAU D, et al. The false positive rate of Kepler and the occurrence of planets[J]. The Astrophysical Journal, 2013, 766(2): 81 doi: 10.1088/0004-637X/766/2/81
|
[39] |
BURKE C J, CHRISTIANSEN J L, MULLALLY F, et al. Terrestrial planet occurrence rates for the Kepler GK dwarf sample[J]. The Astrophysical Journal, 2015, 809(1): 8 doi: 10.1088/0004-637X/809/1/8
|
[40] |
HOLMAN M J, FABRYCKY D C, RAGOZZINE D, et al. Kepler-9: a system of multiple planets transiting a sun-like star, confirmed by timing variations[J]. Science, 2010, 330(6000): 51-54 doi: 10.1126/science.1195778
|
[41] |
DOYLE L R, CARTER J A, FABRYCKY D C, et al. Kepler-16: a transiting circumbinary planet[J]. Science, 2011, 333(6049): 1602-1606 doi: 10.1126/science.1210923
|
[42] |
VAN DER MAREL N, VAN DISHOECK E F, BRUDERER S, et al. A major asymmetric dust trap in a transition disk[J]. Science, 2013, 340(6137): 1199-1202 doi: 10.1126/science.1236770
|
[43] |
ALMA Partnership, BROGAN C L, PÉREZ L M, et al. The 2014 alma long baseline campaign: first results from high angular resolution observations toward the HL tau region[J]. The Astrophysical Journal, 2015, 808(1): L3 doi: 10.1088/2041-8205/808/1/L3
|
[44] |
ANDREWS S M, HUANG J, PÉREZ L M, et al. The disk substructures at high angular resolution project (DSHARP). I. Motivation, sample, calibration, and overview[J]. The Astrophysical Journal, 2018, 869(2): L41 doi: 10.3847/2041-8213/aaf741
|
[45] |
LONG F, PINILLA P, HERCZEG G J, et al. Gaps and rings in an ALMA survey of disks in the Taurus star-forming region[J]. The Astrophysical Journal, 2018, 869(1): 17 doi: 10.3847/1538-4357/aae8e1
|
[46] |
DEMORY B O, DE WIT J, LEWIS N, et al. Inference of inhomogeneous clouds in an exoplanet atmosphere[J]. The Astrophysical Journal, 2013, 776(2): L25 doi: 10.1088/2041-8205/776/2/L25
|
[47] |
QUINTANA E V, BARCLAY T, RAYMOND S N, et al. An earth-sized planet in the habitable zone of a cool star[J]. Science, 2014, 344(6181): 277-280 doi: 10.1126/science.1249403
|
[48] |
SNELLEN I A G, BRANDL B R, DE KOK R J, et al. Fast spin of the young extrasolar planet β Pictoris b[J]. Nature, 2014, 509(7498): 63-65 doi: 10.1038/nature13253
|
[49] |
ANGLADA-ESCUDÉ G, AMADO P J, BARNES J, et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri[J]. Nature, 2016, 536(7617): 437-440 doi: 10.1038/nature19106
|
[50] |
GILLON M, TRIAUD A H M J, DEMORY B O, et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1[J]. Nature, 2017, 542(7642): 456-460 doi: 10.1038/nature21360
|
[51] |
GILLON M, JEHIN E, LEDERER S M, et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star[J]. Nature, 2016, 533(7602): 221-224 doi: 10.1038/nature17448
|
[52] |
RICKER G R, WINN J N, VANDERSPEK R, et al. Transiting exoplanet survey satellite[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2014, 1(1): 014003 doi: 10.1117/1.JATIS.1.1.014003
|
[53] |
YOSHIDA S, VISSAPRAGADA S, LATHAM D W, et al. TESS spots a super-puff: the remarkably low density of TOI-1420 b[J]. The Astronomical Journal, 2023, 166(5): 181 doi: 10.3847/1538-3881/acf858
|
[54] |
NAPONIELLO L, MANCINI L, SOZZETTI A, et al. A super-massive Neptune-sized planet[J]. Nature, 2023, 622(7982): 255-260 doi: 10.1038/s41586-023-06499-2
|
[55] |
ALDERSON L, WAKEFORD H R, ALAM M K, et al. Early release science of the exoplanet WASP-39 b with JWST NIRSpec G395H[J]. Nature, 2023, 614(7949): 664-669 doi: 10.1038/s41586-022-05591-3
|
[56] |
JWST Transiting Exoplanet Community Early Release Science Team. Identification of carbon dioxide in an exoplanet atmosphere[J]. Nature, 2023, 614(7949): 649-652 doi: 10.1038/s41586-022-05269-w
|
[57] |
MADHUSUDHAN N, SARKAR S, CONSTANTINOU S, et al. Carbon-bearing molecules in a possible hycean atmosphere[J]. The Astrophysical Journal Letters, 2023, 956(1): L13 doi: 10.3847/2041-8213/acf577
|
[58] |
MCCAUGHREAN M J, PEARSON S G. A JWST survey of the trapezium cluster & inner Orion Nebula. I. Observations & overview[OL]. arXiv preprint arXiv: 2310.03552, 2023
|
[59] |
POLLACK J B, HUBICKYJ O, BODENHEIMER P, et al. Formation of the giant planets by concurrent accretion of solids and gas[J]. Icarus, 1996, 124(1): 62-85 doi: 10.1006/icar.1996.0190
|
[60] |
BOSS A P. Giant planet formation by gravitational instability[J]. Science, 1997, 276(5320): 1836-1839 doi: 10.1126/science.276.5320.1836
|
[61] |
LIN D N C, BODENHEIMER P, RICHARDSON D C. Orbital migration of the planetary companion of 51 Pegasi to its present location[J]. Nature, 1996, 380(6575): 606-607 doi: 10.1038/380606a0
|
[62] |
RASIO F A, FORD E B. Dynamical instabilities and the formation of extrasolar planetary systems[J]. Science, 1996, 274(5289): 954-956 doi: 10.1126/science.274.5289.954
|
[63] |
HOLMAN M, TOUMA J, TREMAINE S. Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B[J]. Nature, 1997, 386(6622): 254-256 doi: 10.1038/386254a0
|
[64] |
WU Y, MURRAY N. Planet migration and binary companions: the case of HD 80606 b[J]. The Astrophysical Journal, 2003, 589(1): 605-614 doi: 10.1086/374598
|
[65] |
FABRYCKY D, TREMAINE S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction[J]. The Astrophysical Journal, 2007, 669(2): 1298-1315 doi: 10.1086/521702
|
[66] |
YOUDIN A N, GOODMAN J. Streaming instabilities in protoplanetary disks[J]. The Astrophysical Journal, 2005, 620(1): 459-469 doi: 10.1086/426895
|
[67] |
JOHANSEN A, OISHI J S, MAC LOW M M, et al. Rapid planetesimal formation in turbulent circumstellar disks[J]. Nature, 2007, 448(7157): 1022-1025 doi: 10.1038/nature06086
|
[68] |
ORMEL C W, KLAHR H H. The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks[J]. Astronomy & Astrophysics, 2010, 520: A43
|
[69] |
IDA S, LIN D N C. Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets[J]. The Astrophysical Journal, 2004, 604(1): 388-413 doi: 10.1086/381724
|
[70] |
MORDASINI C, ALIBERT Y, KLAHR H, et al. Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution[J]. Astronomy & Astrophysics, 2012, 547: A111
|
[71] |
LIU B B, LAMBRECHTS M, JOHANSEN A, et al. Super-Earth masses sculpted by pebble isolation around stars of different masses[J]. Astronomy & Astrophysics, 2019, 632: A7
|
[72] |
OWEN J E, WU Y Q. Kepler planets: a tale of evaporation[J]. The Astrophysical Journal, 2013, 775(2): 105 doi: 10.1088/0004-637X/775/2/105
|
[73] |
JIN S, MORDASINI C, PARMENTIER V, et al. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation[J]. The Astrophysical Journal, 2014, 795(1): 65 doi: 10.1088/0004-637X/795/1/65
|
[74] |
FULTON B J, PETIGURA E A, HOWARD A W, et al. The California- Kepler survey. III. A gap in the radius distribution of small planets[J]. The Astronomical Journal, 2017, 154(3): 109 doi: 10.3847/1538-3881/aa80eb
|
[75] |
VAN EYLEN V, AGENTOFT C, LUNDKVIST M S, et al. An asteroseismic view of the radius valley: stripped cores, not born rocky[J]. Monthly Notices of the Royal Astronomical Society, 2018, 479(4): 4786-4795 doi: 10.1093/mnras/sty1783
|
[76] |
BAI X N, STONE J M. Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind[J]. The Astrophysical Journal, 2013, 769(1): 76 doi: 10.1088/0004-637X/769/1/76
|
[77] |
LIU Y J, SATO B, ZHAO G, et al. A substellar companion to the intermediate-mass giant 11 comae[J]. The Astrophysical Journal, 2008, 672(1): 553-557 doi: 10.1086/523297
|
[78] |
WANG S H, ZHANG H, ZHOU X, et al. Photometric variability in the cstar field: results from the 2008 data set[J]. The Astrophysical Journal Supplement Series, 2015, 218(2): 20 doi: 10.1088/0067-0049/218/2/20
|
[79] |
ZHANG H, YU Z Y, LIANG E S, et al. Exoplanets in the Antarctic sky. II. 116 transiting exoplanet candidates found by AST3-II (CHESPA) within the southern CVZ of TESS[J]. The Astrophysical Journal Supplement Series, 2019, 240(2): 17 doi: 10.3847/1538-4365/aaf583
|
[80] |
ZANG W C, Jung Y K, Yang H J, et al. Systematic KMTNet planetary anomaly search. VII. Complete sample of q < 10-4 planets from the first 4 yr survey[J]. The Astronomical Journal, 2023, 165(3): 103 doi: 10.3847/1538-3881/acb34b
|
[81] |
WU Z X, DONG S B, YI T, et al. Gaia22dkvLb: a microlensing planet potentially accessible to radial-velocity characterization[OL]. arXiv preprint arXiv: 2309.03944, 2023
|
[82] |
FENG F B, BUTLER R P, JONES H R A, et al. Optimized modelling of Gaia-Hipparcos astrometry for the detection of the smallest cold Jupiter and confirmation of seven low-mass companions[J]. Monthly Notices of the Royal Astronomical Society, 2021, 507(2): 2856-2868 doi: 10.1093/mnras/stab2225
|
[83] |
FENG F B, BUTLER R P, VOGT S S, et al. 3D selection of 167 substellar companions to nearby stars[J]. The Astrophysical Journal Supplement Series, 2022, 262(1): 21 doi: 10.3847/1538-4365/ac7e57
|
[84] |
ZHU Y T, DOU J P, ZHANG X, et al. Portable adaptive optics for exoplanet imaging[J]. Research in Astronomy and Astrophysics, 2021, 21(4): 082 doi: 10.1088/1674-4527/21/4/82
|
[85] |
XIE J W, DONG S B, ZHU Z H, et al. Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): 11431-11435
|
[86] |
DONG S B, XIE J W, ZHOU J L, et al. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(2): 266-271
|
[87] |
DAI Y Z, LIU H G, AN D S, et al. Planet occurrence rate correlated to stellar dynamical history: evidence from Kepler and Gaia[J]. The Astronomical Journal, 2021, 162(2): 46 doi: 10.3847/1538-3881/ac00ad
|
[88] |
DAI Y Z, LIU H G, YANG J Y, et al. Understanding the planetary formation and evolution in star clusters (UPiC). I. Evidence of hot giant exoplanets formation timescales[J]. The Astronomical Journal, 2023, 166(6): 219 doi: 10.3847/1538-3881/acff67
|
[89] |
CHEN D C, XIE J W, ZHOU J L, et al. The evolution of hot Jupiters revealed by the age distribution of their host stars[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(45): e2304179120
|
[90] |
YANG J Y, CHEN D C, XIE J W, et al. Planets across space and time (PAST). IV. The occurrence and architecture of Kepler planetary systems as a function of kinematic age revealed by the LAMOST-Gaia-Kepler sample[J]. The Astronomical Journal, 2023, 166(6): 243 doi: 10.3847/1538-3881/ad0368
|
[91] |
JIN S, LI S T, ISELLA A, et al. Modeling dust emission of HL tau disk based on planet-disk interactions[J]. The Astrophysical Journal, 2016, 818(1): 76 doi: 10.3847/0004-637X/818/1/76
|
[92] |
HUANG P H, DONG R B, LI H, et al. The observability of vortex-driven spiral arms in protoplanetary disks: basic spiral properties[J]. The Astrophysical Journal, 2019, 883(2): L39 doi: 10.3847/2041-8213/ab40c4
|
[93] |
HUANG P H, ISELLA A, LI H, et al. Identifying anticyclonic vortex features produced by the rossby wave instability in protoplanetary disks[J]. The Astrophysical Journal, 2018, 867(1): 3 doi: 10.3847/1538-4357/aae317
|
[94] |
HUANG P H, LI H, ISELLA A, et al. Meso-scale instability triggered by dust feedback in dusty rings: origin and observational implications[J]. The Astrophysical Journal, 2020, 893(2): 89 doi: 10.3847/1538-4357/ab8199
|
[95] |
JIN S, ISELLA A, HUANG P H, et al. New constraints on the dust and gas distribution in the LkCa 15 disk from ALMA[J]. The Astrophysical Journal, 2019, 881(2): 108 doi: 10.3847/1538-4357/ab2dfe
|
[96] |
WANG W, VAN BOEKEL R, MADHUSUDHAN N, et al. Ground-based detections of thermal emission from the dense hot Jupiter WASP-43 b in the H and KS bands[J]. The Astrophysical Journal, 2013, 770(1): 70 doi: 10.1088/0004-637X/770/1/70
|
[97] |
YAN F, HENNING T. An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9 b[J]. Nature Astronomy, 2018, 2(9): 714-718 doi: 10.1038/s41550-018-0503-3
|
[98] |
CHEN G, CASASAYAS-BARRIS N, PALLÉ E, et al. Detection of Na, K, and H α absorption in the atmosphere of WASP-52 b using ESPRESSO[J]. Astronomy & Astrophysics, 2020, 635: A171
|
[99] |
HU Y, YANG J, LIU Y, et al. Can water be frozen on the nightside of tidal-locking exoplanets[C/OL]//American Geophysical Union, Fall Meeting 2014. https://ui.adsabs.harvard.edu/abs/2014AGUFM.P53C4034H/abstract
|
[100] |
YANG J, DING F, RAMIREZ R M, et al. Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse[J]. Nature Geoscience, 2017, 10(8): 556-560 doi: 10.1038/ngeo2994
|
[101] |
YANG J, JI W W, ZENG Y X. Transition from eyeball to snowball driven by sea-ice drift on tidally locked terrestrial planets[J]. Nature Astronomy, 2020, 4(1): 58-66
|
[102] |
BAI X N. Global simulations of the inner regions of protoplanetary disks with comprehensive disk microphysics[J]. The Astrophysical Journal, 2017, 845(1): 75 doi: 10.3847/1538-4357/aa7dda
|
[103] |
LIU B B, JOHANSEN A, LAMBRECHTS M, et al. Natural separation of two primordial planetary reservoirs in an expanding solar protoplanetary disk[J]. Science Advances, 2022, 8(16): eabm3045 doi: 10.1126/sciadv.abm3045
|
[104] |
LIU B B, RAYMOND S N, JACOBSON S A. Early Solar System instability triggered by dispersal of the gaseous disk[J]. Nature, 2022, 604(7907): 643-646 doi: 10.1038/s41586-022-04535-1
|
[105] |
LIU S F, HORI Y, MÜLLER S, et al. The formation of Jupiter's diluted core by a giant impact[J]. Nature, 2019, 572(7769): 355-357 doi: 10.1038/s41586-019-1470-2
|
[106] |
GE J, ZHANG H, ZANG W C, et al. ET white paper: to find the first Earth 2.0[C/OL]. arXiv preprint arXiv: 2206.06693, 2022
|
[107] |
LIU B, JI J. A tale of planet formation: from dust to planets[J]. Research in Astronomy and Astrophysics, 2020, 20: 164
|
[108] |
JI J H, LI H T, ZHANG J B, et al. CHES: a Space-borne astrometric mission for the detection of habitable planets of the nearby solar-type stars[J]. Research in Astronomy and Astrophysics, 2022, 22(7): 072003 doi: 10.1088/1674-4527/ac77e4
|
[109] |
ZHANG X. Atmospheric regimes and trends on exoplanets and brown dwarfs[J]. Research in Astronomy and Astrophysics, 2020, 20: 099 doi: 10.1088/1674-4527/20/7/99
|