留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
周济林, 谢基伟, 葛健, 季江徽, 窦江培, 东苏勃, 刘慧根, 王炜, 郭建恒, 余聪, 白雪宁, 冯发波, 刘倍贝. 空间系外行星探测与研究进展[J]. 空间科学学报, 2024, 44(1): 5-18. doi: 10.11728/cjss2024.01.2024-yg01
引用本文: 周济林, 谢基伟, 葛健, 季江徽, 窦江培, 东苏勃, 刘慧根, 王炜, 郭建恒, 余聪, 白雪宁, 冯发波, 刘倍贝. 空间系外行星探测与研究进展[J]. 空间科学学报, 2024, 44(1): 5-18. doi: 10.11728/cjss2024.01.2024-yg01
ZHOU Jilin, XIE Jiwei, GE Jian, JI Jianghui, DOU Jiangpei, DONG Subo, LIU Huigen, WANG Wei, GUO Jianheng, YU Cong, BAI Xuening, FENG Fabo, LIU Beibei. Progress on Exoplanet Detection and Research in Space (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 5-18 doi: 10.11728/cjss2024.01.2024-yg01
Citation: ZHOU Jilin, XIE Jiwei, GE Jian, JI Jianghui, DOU Jiangpei, DONG Subo, LIU Huigen, WANG Wei, GUO Jianheng, YU Cong, BAI Xuening, FENG Fabo, LIU Beibei. Progress on Exoplanet Detection and Research in Space (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 5-18 doi: 10.11728/cjss2024.01.2024-yg01

空间系外行星探测与研究进展

doi: 10.11728/cjss2024.01.2024-yg01 cstr: 32142.14.cjss2024.01.2024-yg01
基金项目: 国家重点研究发展计划项目(2019YFA0706601, 2019YFA0405100), 国家自然科学基金项目(11933001, 12150009, 12273011, 11973028, 1803012, 12033010, U2031210, 11827804, 12133005, 11973082, 12288102, 12373071, 12233004, 12325304, 1222230, 12173035, 12111530175), 中国科学院空间科学先导专项 (XDA15020600, XDA15020800, XDB41000000), 中国载人航天工程巡天空间望远镜专项科学研究经费(CMS-CSST-2021-A11, CMS-CSST-2021-B0, CMS-CSST-2021-B09, CMS-CSST-2021-B12), 民用航天技术预先研究项目(D050105)和中央高校基本科研业务费专项资金资助项目(2022-KYY-506107-0001, 226-2022-00216)共同资助
详细信息
    作者简介:
    • 周济林:男, 1969年12月出生于浙江金华. 现为南京大学天文与空间科学学院教授, 博士生导师, 主要研究领域为天体力学、太阳系动力学、太阳系外行星探测与动力学等. E-mail: zhoujl@nju.edu.cn
  • 中图分类号: V476

Progress on Exoplanet Detection and Research in Space

  • 摘要: 系外行星学科是近30年来迅速发展起来的一门新兴学科. 其主要研究内容和目标包括, 通过发展各种探测技术探测太阳系外行星, 分析行星轨道、成分、大气性质, 评估行星的宜居性, 统计行星的分布规律, 从理论和观测上揭示行星系统的形成和动力学演化机制. 系外行星的研究对于回答宇宙中是否存在其他生命以及人类在宇宙中的地位和意义等问题具有重要意义. 随着21世纪空间探测技术的发展, 系外行星的研究进入了崭新及快速的发展阶段. 本文分析了系外行星研究领域的发展态势, 凝练中国在系外行星未来空间探测发展的重点领域, 优化学科布局, 以推进系外行星研究的快速稳步发展.

     

  • 图  1  系外行星探索中的重要进展和空间望远镜

    Figure  1.  Important developments and space telescopes in exploration of exoplanets

    图  2  与系外行星相关的空间探测任务的时间表

    Figure  2.  Timeline of Space Missions related to Exoplanets

  • [1] MAYOR M, QUELOZ D. A Jupiter-mass companion to a solar-type star[J]. Nature, 1995, 378(6555): 355-359 doi: 10.1038/378355a0
    [2] 中国学科及前沿领域发展战略研究(2021-2035)项目组. 中国天文学2035发展战略[M]. 北京: 科学出版社, 2023

    The Project Team of Research on Development Strategies of Chinese Disciplines and Frontiers (2021-2035). Development Strategy of Chinese Astronomy 2035[M]. Beijing: Science Press, 2023
    [3] National Academies of Sciences, Engineering, and Medicine. Pathways to Discovery in Astronomy and Astrophysics for the 2020s[M]. Washington: The National Academies Press, 2021
    [4] FAVATA F, HASINGER G, TACCONI L J, et al. Introducing the Voyage 2050 White Papers, contributions from the science community to ESA’s long-term plan for the Scientific Programme[J]. Experimental Astronomy, 2021, 51(3): 551-558 doi: 10.1007/s10686-021-09746-4
    [5] CHARBONNEAU D, BROWN T M, NOYES R W, et al. Detection of an extrasolar planet atmosphere[J]. The Astrophysical Journal, 2002, 568(1): 377-384 doi: 10.1086/338770
    [6] SWAIN M R, VASISHT G, TINETTI G. The presence of methane in the atmosphere of an extrasolar planet[J]. Nature, 2008, 452(7185): 329-331 doi: 10.1038/nature06823
    [7] KREIDBERG L, BEAN J L, DÉSERT J M, et al. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b[J]. Nature, 2014, 505(7481): 69-72 doi: 10.1038/nature12888
    [8] SWAIN M R, ESTRELA R, ROUDIER G M, et al. Detection of an atmosphere on a rocky exoplanet[J]. The Astronomical Journal, 2021, 161(5): 213 doi: 10.3847/1538-3881/abe879
    [9] HARRINGTON J, HANSEN B M, LUSZCZ S H, et al. The phase-dependent infrared brightness of the extrasolar planet ʊ Andromedae b[J]. Science, 2006, 314(5799): 623-626 doi: 10.1126/science.1133904
    [10] TINETTI G, VIDAL-MADJAR A, LIANG M C, et al. Water vapour in the atmosphere of a transiting extrasolar planet[J]. Nature, 2007, 448(7150): 169-171 doi: 10.1038/nature06002
    [11] GRILLMAIR C J, BURROWS A, CHARBONNEAU D, et al. Strong water absorption in the dayside emission spectrum of the planet HD 189733 b[J]. Nature, 2008, 456(7223): 767-769 doi: 10.1038/nature07574
    [12] KREIDBERG L, KOLL D D B, MORLEY C, et al. Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844 b[J]. Nature, 2019, 573(7772): 87-90 doi: 10.1038/s41586-019-1497-4
    [13] LÉGER A, ROUAN D, SCHNEIDER J, et al. Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7 b: the first super-Earth with measured radius[J]. Astronomy & Astrophysics, 2009, 506(1): 287-302
    [14] BORUCKI W J, KOCH D, BASRI G, et al. Kepler planet-detection mission: introduction and first results[J]. Science, 2010, 327(5968): 977-980 doi: 10.1126/science.1185402
    [15] Gaia Collaboration, PRUSTI T, DE BRUIJNE J H J, et al. The Gaia mission[J]. Astronomy & Astrophysics, 2016, 595: A1
    [16] Gaia Collaboration, BROWN A G A, VALLENARI A, et al. Gaia data release 1. Summary of the astrometric, photometric, and survey properties[J]. Astronomy & Astrophysics, 2016, 595 : A2
    [17] Gaia Collaboration, BROWN A G A, VALLENARI A, et al. Gaia early data release 3. Summary of the contents and survey properties[J]. Astronomy & Astrophysics, 2021, 649 : A1
    [18] Gaia Collaboration, ARENOU F, BABUSIAUX C, et al. Gaia data release 3: stellar multiplicity, a teaser for the hidden treasure[J]. Astronomy & Astrophysics, 2023, 674 : A34
    [19] HOLL B, SOZZETTI A, SAHLMANN J, et al. Gaia data release 3. Astrometric orbit determination with Markov chain Monte Carlo and genetic algorithms: systems with stellar, sub-stellar, and planetary mass companions[J]. Astronomy & Astrophysics, 2023, 674 : A10
    [20] PERRYMAN M, HARTMAN J, BAKOS G Á, et al. Astrometric exoplanet detection with Gaia[J]. The Astrophysical Journal, 2014, 797(1): 14 doi: 10.1088/0004-637X/797/1/14
    [21] HENRY G W, MARCY G W, BUTLER R P, et al. A transiting “51 Peg-like” planet[J]. The Astrophysical Jour nal, 2000, 529(1): L41-L44 doi: 10.1086/312458
    [22] CHARBONNEAU D, BROWN T M, LATHAM D W, et al. Detection of planetary transits across a sun-like star[J]. The Astrophysical Journal, 2000, 529(1): L45-L48 doi: 10.1086/312457
    [23] VIDAL-MADJAR A, DES ETANGS A L, DÉSERT J M, et al. An extended upper atmosphere around the extrasolar planet HD 209458 b[J]. Nature, 2003, 422(6928): 143-146 doi: 10.1038/nature01448
    [24] BOND I A, UDALSKI A, JAROSZYŃSKI M, et al. OGLE 2003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event[J]. The Astrophysical Journal, 2004, 606(2): L155-L158 doi: 10.1086/420928
    [25] GOULD A, UDALSKI A, AN D, et al. Microlens OGLE-2005-BLG-169 implies that cool Neptune-like planets are common[J]. The Astrophysical Journal, 2006, 644(1): L37-L40 doi: 10.1086/505421
    [26] GOULD A, DONG S B, GAUDI B S, et al. Frequency of solar-like systems and of ice and gas giants beyond the snow line from high-magnification microlensing events in 2005-2008[J]. The Astrophysical Journal, 2010, 720(2): 1073-1089 doi: 10.1088/0004-637X/720/2/1073
    [27] MRÓZ P, UDALSKI A, SKOWRON J, et al. No large population of unbound or wide-orbit Jupiter-mass planets[J]. Nature, 2017, 548(7666): 183-186 doi: 10.1038/nature23276
    [28] MRÓZ P, RYU Y H, SKOWRON J, et al. A Neptune-mass free-floating planet candidate discovered by microlensing surveys[J]. The Astronomical Journal, 2018, 155(3): 121 doi: 10.3847/1538-3881/aaaae9
    [29] BUTLER R P, VOGT S S, MARCY G W, et al. A Neptune-mass planet orbiting the nearby M dwarf GJ 436[J]. The Astrophysical Journal, 2004, 617(1): 580-588 doi: 10.1086/425173
    [30] MCARTHUR B E, ENDL M, COCHRAN W D, et al. Detection of a Neptune-mass planet in the ρ1 cancri system using the hobby-eberly telescope[J]. The Astrophysical Journal, 2004, 614(1): L81-L84 doi: 10.1086/425561
    [31] KNUTSON H A, CHARBONNEAU D, ALLEN L E, et al. A map of the day-night contrast of the extrasolar planet HD 189733 b[J]. Nature, 2007, 447(7141): 183-186 doi: 10.1038/nature05782
    [32] MAROIS C, MACINTOSH B, BARMAN T, et al. Direct imaging of multiple planets orbiting the star HR 8799[J]. Science, 2008, 322(5906): 1348-1352 doi: 10.1126/science.1166585
    [33] MAROIS C, ZUCKERMAN B, KONOPACKY Q M, et al. Images of a fourth planet orbiting HR 8799[J]. Nature, 2010, 468(7327): 1080-1083 doi: 10.1038/nature09684
    [34] SERABYN E, MAWET D, BURRUSS R. An image of an exoplanet separated by two diffraction beamwidths from a star[J]. Nature, 2010, 464(7291): 1018-1020 doi: 10.1038/nature09007
    [35] HOWARD A W, MARCY G W, BRYSON S T, et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler[J]. The Astrophysical Journal Supplement Series, 2012, 201(2): 15 doi: 10.1088/0067-0049/201/2/15
    [36] DONG S B, ZHU Z H. Fast rise of “Neptune-size” planets (4-8 R) from P ~ 10 to ~250 days—statistics of Kepler planet candidates up to ~0.75 AU[J]. The Astrophysical Journal, 2013, 778(1): 53 doi: 10.1088/0004-637X/778/1/53
    [37] PETIGURA E A, HOWARD A W, MARCY G W. Prevalence of Earth-size planets orbiting Sun-like stars[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(48): 19273-19278
    [38] FRESSIN F, TORRES G, CHARBONNEAU D, et al. The false positive rate of Kepler and the occurrence of planets[J]. The Astrophysical Journal, 2013, 766(2): 81 doi: 10.1088/0004-637X/766/2/81
    [39] BURKE C J, CHRISTIANSEN J L, MULLALLY F, et al. Terrestrial planet occurrence rates for the Kepler GK dwarf sample[J]. The Astrophysical Journal, 2015, 809(1): 8 doi: 10.1088/0004-637X/809/1/8
    [40] HOLMAN M J, FABRYCKY D C, RAGOZZINE D, et al. Kepler-9: a system of multiple planets transiting a sun-like star, confirmed by timing variations[J]. Science, 2010, 330(6000): 51-54 doi: 10.1126/science.1195778
    [41] DOYLE L R, CARTER J A, FABRYCKY D C, et al. Kepler-16: a transiting circumbinary planet[J]. Science, 2011, 333(6049): 1602-1606 doi: 10.1126/science.1210923
    [42] VAN DER MAREL N, VAN DISHOECK E F, BRUDERER S, et al. A major asymmetric dust trap in a transition disk[J]. Science, 2013, 340(6137): 1199-1202 doi: 10.1126/science.1236770
    [43] ALMA Partnership, BROGAN C L, PÉREZ L M, et al. The 2014 alma long baseline campaign: first results from high angular resolution observations toward the HL tau region[J]. The Astrophysical Journal, 2015, 808(1): L3 doi: 10.1088/2041-8205/808/1/L3
    [44] ANDREWS S M, HUANG J, PÉREZ L M, et al. The disk substructures at high angular resolution project (DSHARP). I. Motivation, sample, calibration, and overview[J]. The Astrophysical Journal, 2018, 869(2): L41 doi: 10.3847/2041-8213/aaf741
    [45] LONG F, PINILLA P, HERCZEG G J, et al. Gaps and rings in an ALMA survey of disks in the Taurus star-forming region[J]. The Astrophysical Journal, 2018, 869(1): 17 doi: 10.3847/1538-4357/aae8e1
    [46] DEMORY B O, DE WIT J, LEWIS N, et al. Inference of inhomogeneous clouds in an exoplanet atmosphere[J]. The Astrophysical Journal, 2013, 776(2): L25 doi: 10.1088/2041-8205/776/2/L25
    [47] QUINTANA E V, BARCLAY T, RAYMOND S N, et al. An earth-sized planet in the habitable zone of a cool star[J]. Science, 2014, 344(6181): 277-280 doi: 10.1126/science.1249403
    [48] SNELLEN I A G, BRANDL B R, DE KOK R J, et al. Fast spin of the young extrasolar planet β Pictoris b[J]. Nature, 2014, 509(7498): 63-65 doi: 10.1038/nature13253
    [49] ANGLADA-ESCUDÉ G, AMADO P J, BARNES J, et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri[J]. Nature, 2016, 536(7617): 437-440 doi: 10.1038/nature19106
    [50] GILLON M, TRIAUD A H M J, DEMORY B O, et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1[J]. Nature, 2017, 542(7642): 456-460 doi: 10.1038/nature21360
    [51] GILLON M, JEHIN E, LEDERER S M, et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star[J]. Nature, 2016, 533(7602): 221-224 doi: 10.1038/nature17448
    [52] RICKER G R, WINN J N, VANDERSPEK R, et al. Transiting exoplanet survey satellite[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2014, 1(1): 014003 doi: 10.1117/1.JATIS.1.1.014003
    [53] YOSHIDA S, VISSAPRAGADA S, LATHAM D W, et al. TESS spots a super-puff: the remarkably low density of TOI-1420 b[J]. The Astronomical Journal, 2023, 166(5): 181 doi: 10.3847/1538-3881/acf858
    [54] NAPONIELLO L, MANCINI L, SOZZETTI A, et al. A super-massive Neptune-sized planet[J]. Nature, 2023, 622(7982): 255-260 doi: 10.1038/s41586-023-06499-2
    [55] ALDERSON L, WAKEFORD H R, ALAM M K, et al. Early release science of the exoplanet WASP-39 b with JWST NIRSpec G395H[J]. Nature, 2023, 614(7949): 664-669 doi: 10.1038/s41586-022-05591-3
    [56] JWST Transiting Exoplanet Community Early Release Science Team. Identification of carbon dioxide in an exoplanet atmosphere[J]. Nature, 2023, 614(7949): 649-652 doi: 10.1038/s41586-022-05269-w
    [57] MADHUSUDHAN N, SARKAR S, CONSTANTINOU S, et al. Carbon-bearing molecules in a possible hycean atmosphere[J]. The Astrophysical Journal Letters, 2023, 956(1): L13 doi: 10.3847/2041-8213/acf577
    [58] MCCAUGHREAN M J, PEARSON S G. A JWST survey of the trapezium cluster & inner Orion Nebula. I. Observations & overview[OL]. arXiv preprint arXiv: 2310.03552, 2023
    [59] POLLACK J B, HUBICKYJ O, BODENHEIMER P, et al. Formation of the giant planets by concurrent accretion of solids and gas[J]. Icarus, 1996, 124(1): 62-85 doi: 10.1006/icar.1996.0190
    [60] BOSS A P. Giant planet formation by gravitational instability[J]. Science, 1997, 276(5320): 1836-1839 doi: 10.1126/science.276.5320.1836
    [61] LIN D N C, BODENHEIMER P, RICHARDSON D C. Orbital migration of the planetary companion of 51 Pegasi to its present location[J]. Nature, 1996, 380(6575): 606-607 doi: 10.1038/380606a0
    [62] RASIO F A, FORD E B. Dynamical instabilities and the formation of extrasolar planetary systems[J]. Science, 1996, 274(5289): 954-956 doi: 10.1126/science.274.5289.954
    [63] HOLMAN M, TOUMA J, TREMAINE S. Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B[J]. Nature, 1997, 386(6622): 254-256 doi: 10.1038/386254a0
    [64] WU Y, MURRAY N. Planet migration and binary companions: the case of HD 80606 b[J]. The Astrophysical Journal, 2003, 589(1): 605-614 doi: 10.1086/374598
    [65] FABRYCKY D, TREMAINE S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction[J]. The Astrophysical Journal, 2007, 669(2): 1298-1315 doi: 10.1086/521702
    [66] YOUDIN A N, GOODMAN J. Streaming instabilities in protoplanetary disks[J]. The Astrophysical Journal, 2005, 620(1): 459-469 doi: 10.1086/426895
    [67] JOHANSEN A, OISHI J S, MAC LOW M M, et al. Rapid planetesimal formation in turbulent circumstellar disks[J]. Nature, 2007, 448(7157): 1022-1025 doi: 10.1038/nature06086
    [68] ORMEL C W, KLAHR H H. The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks[J]. Astronomy & Astrophysics, 2010, 520: A43
    [69] IDA S, LIN D N C. Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets[J]. The Astrophysical Journal, 2004, 604(1): 388-413 doi: 10.1086/381724
    [70] MORDASINI C, ALIBERT Y, KLAHR H, et al. Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution[J]. Astronomy & Astrophysics, 2012, 547: A111
    [71] LIU B B, LAMBRECHTS M, JOHANSEN A, et al. Super-Earth masses sculpted by pebble isolation around stars of different masses[J]. Astronomy & Astrophysics, 2019, 632: A7
    [72] OWEN J E, WU Y Q. Kepler planets: a tale of evaporation[J]. The Astrophysical Journal, 2013, 775(2): 105 doi: 10.1088/0004-637X/775/2/105
    [73] JIN S, MORDASINI C, PARMENTIER V, et al. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation[J]. The Astrophysical Journal, 2014, 795(1): 65 doi: 10.1088/0004-637X/795/1/65
    [74] FULTON B J, PETIGURA E A, HOWARD A W, et al. The California- Kepler survey. III. A gap in the radius distribution of small planets[J]. The Astronomical Journal, 2017, 154(3): 109 doi: 10.3847/1538-3881/aa80eb
    [75] VAN EYLEN V, AGENTOFT C, LUNDKVIST M S, et al. An asteroseismic view of the radius valley: stripped cores, not born rocky[J]. Monthly Notices of the Royal Astronomical Society, 2018, 479(4): 4786-4795 doi: 10.1093/mnras/sty1783
    [76] BAI X N, STONE J M. Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind[J]. The Astrophysical Journal, 2013, 769(1): 76 doi: 10.1088/0004-637X/769/1/76
    [77] LIU Y J, SATO B, ZHAO G, et al. A substellar companion to the intermediate-mass giant 11 comae[J]. The Astrophysical Journal, 2008, 672(1): 553-557 doi: 10.1086/523297
    [78] WANG S H, ZHANG H, ZHOU X, et al. Photometric variability in the cstar field: results from the 2008 data set[J]. The Astrophysical Journal Supplement Series, 2015, 218(2): 20 doi: 10.1088/0067-0049/218/2/20
    [79] ZHANG H, YU Z Y, LIANG E S, et al. Exoplanets in the Antarctic sky. II. 116 transiting exoplanet candidates found by AST3-II (CHESPA) within the southern CVZ of TESS[J]. The Astrophysical Journal Supplement Series, 2019, 240(2): 17 doi: 10.3847/1538-4365/aaf583
    [80] ZANG W C, Jung Y K, Yang H J, et al. Systematic KMTNet planetary anomaly search. VII. Complete sample of q < 10-4 planets from the first 4 yr survey[J]. The Astronomical Journal, 2023, 165(3): 103 doi: 10.3847/1538-3881/acb34b
    [81] WU Z X, DONG S B, YI T, et al. Gaia22dkvLb: a microlensing planet potentially accessible to radial-velocity characterization[OL]. arXiv preprint arXiv: 2309.03944, 2023
    [82] FENG F B, BUTLER R P, JONES H R A, et al. Optimized modelling of Gaia-Hipparcos astrometry for the detection of the smallest cold Jupiter and confirmation of seven low-mass companions[J]. Monthly Notices of the Royal Astronomical Society, 2021, 507(2): 2856-2868 doi: 10.1093/mnras/stab2225
    [83] FENG F B, BUTLER R P, VOGT S S, et al. 3D selection of 167 substellar companions to nearby stars[J]. The Astrophysical Journal Supplement Series, 2022, 262(1): 21 doi: 10.3847/1538-4365/ac7e57
    [84] ZHU Y T, DOU J P, ZHANG X, et al. Portable adaptive optics for exoplanet imaging[J]. Research in Astronomy and Astrophysics, 2021, 21(4): 082 doi: 10.1088/1674-4527/21/4/82
    [85] XIE J W, DONG S B, ZHU Z H, et al. Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): 11431-11435
    [86] DONG S B, XIE J W, ZHOU J L, et al. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(2): 266-271
    [87] DAI Y Z, LIU H G, AN D S, et al. Planet occurrence rate correlated to stellar dynamical history: evidence from Kepler and Gaia[J]. The Astronomical Journal, 2021, 162(2): 46 doi: 10.3847/1538-3881/ac00ad
    [88] DAI Y Z, LIU H G, YANG J Y, et al. Understanding the planetary formation and evolution in star clusters (UPiC). I. Evidence of hot giant exoplanets formation timescales[J]. The Astronomical Journal, 2023, 166(6): 219 doi: 10.3847/1538-3881/acff67
    [89] CHEN D C, XIE J W, ZHOU J L, et al. The evolution of hot Jupiters revealed by the age distribution of their host stars[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(45): e2304179120
    [90] YANG J Y, CHEN D C, XIE J W, et al. Planets across space and time (PAST). IV. The occurrence and architecture of Kepler planetary systems as a function of kinematic age revealed by the LAMOST-Gaia-Kepler sample[J]. The Astronomical Journal, 2023, 166(6): 243 doi: 10.3847/1538-3881/ad0368
    [91] JIN S, LI S T, ISELLA A, et al. Modeling dust emission of HL tau disk based on planet-disk interactions[J]. The Astrophysical Journal, 2016, 818(1): 76 doi: 10.3847/0004-637X/818/1/76
    [92] HUANG P H, DONG R B, LI H, et al. The observability of vortex-driven spiral arms in protoplanetary disks: basic spiral properties[J]. The Astrophysical Journal, 2019, 883(2): L39 doi: 10.3847/2041-8213/ab40c4
    [93] HUANG P H, ISELLA A, LI H, et al. Identifying anticyclonic vortex features produced by the rossby wave instability in protoplanetary disks[J]. The Astrophysical Journal, 2018, 867(1): 3 doi: 10.3847/1538-4357/aae317
    [94] HUANG P H, LI H, ISELLA A, et al. Meso-scale instability triggered by dust feedback in dusty rings: origin and observational implications[J]. The Astrophysical Journal, 2020, 893(2): 89 doi: 10.3847/1538-4357/ab8199
    [95] JIN S, ISELLA A, HUANG P H, et al. New constraints on the dust and gas distribution in the LkCa 15 disk from ALMA[J]. The Astrophysical Journal, 2019, 881(2): 108 doi: 10.3847/1538-4357/ab2dfe
    [96] WANG W, VAN BOEKEL R, MADHUSUDHAN N, et al. Ground-based detections of thermal emission from the dense hot Jupiter WASP-43 b in the H and KS bands[J]. The Astrophysical Journal, 2013, 770(1): 70 doi: 10.1088/0004-637X/770/1/70
    [97] YAN F, HENNING T. An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9 b[J]. Nature Astronomy, 2018, 2(9): 714-718 doi: 10.1038/s41550-018-0503-3
    [98] CHEN G, CASASAYAS-BARRIS N, PALLÉ E, et al. Detection of Na, K, and H α absorption in the atmosphere of WASP-52 b using ESPRESSO[J]. Astronomy & Astrophysics, 2020, 635: A171
    [99] HU Y, YANG J, LIU Y, et al. Can water be frozen on the nightside of tidal-locking exoplanets[C/OL]//American Geophysical Union, Fall Meeting 2014. https://ui.adsabs.harvard.edu/abs/2014AGUFM.P53C4034H/abstract
    [100] YANG J, DING F, RAMIREZ R M, et al. Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse[J]. Nature Geoscience, 2017, 10(8): 556-560 doi: 10.1038/ngeo2994
    [101] YANG J, JI W W, ZENG Y X. Transition from eyeball to snowball driven by sea-ice drift on tidally locked terrestrial planets[J]. Nature Astronomy, 2020, 4(1): 58-66
    [102] BAI X N. Global simulations of the inner regions of protoplanetary disks with comprehensive disk microphysics[J]. The Astrophysical Journal, 2017, 845(1): 75 doi: 10.3847/1538-4357/aa7dda
    [103] LIU B B, JOHANSEN A, LAMBRECHTS M, et al. Natural separation of two primordial planetary reservoirs in an expanding solar protoplanetary disk[J]. Science Advances, 2022, 8(16): eabm3045 doi: 10.1126/sciadv.abm3045
    [104] LIU B B, RAYMOND S N, JACOBSON S A. Early Solar System instability triggered by dispersal of the gaseous disk[J]. Nature, 2022, 604(7907): 643-646 doi: 10.1038/s41586-022-04535-1
    [105] LIU S F, HORI Y, MÜLLER S, et al. The formation of Jupiter's diluted core by a giant impact[J]. Nature, 2019, 572(7769): 355-357 doi: 10.1038/s41586-019-1470-2
    [106] GE J, ZHANG H, ZANG W C, et al. ET white paper: to find the first Earth 2.0[C/OL]. arXiv preprint arXiv: 2206.06693, 2022
    [107] LIU B, JI J. A tale of planet formation: from dust to planets[J]. Research in Astronomy and Astrophysics, 2020, 20: 164
    [108] JI J H, LI H T, ZHANG J B, et al. CHES: a Space-borne astrometric mission for the detection of habitable planets of the nearby solar-type stars[J]. Research in Astronomy and Astrophysics, 2022, 22(7): 072003 doi: 10.1088/1674-4527/ac77e4
    [109] ZHANG X. Atmospheric regimes and trends on exoplanets and brown dwarfs[J]. Research in Astronomy and Astrophysics, 2020, 20: 099 doi: 10.1088/1674-4527/20/7/99
  • 加载中
图(2)
计量
  • 文章访问数:  2325
  • HTML全文浏览量:  320
  • PDF下载量:  370
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-12-15
  • 修回日期:  2024-01-13
  • 网络出版日期:  2024-02-01

目录

    /

    返回文章
    返回