留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深空探测自主运行的一种可信性技术体系

党炜 骆军委 郑作环 敖亮 李博 李鹏 熊盛阳 许鹏程 宋恒旭 胡剑桥 冯业为

党炜, 骆军委, 郑作环, 敖亮, 李博, 李鹏, 熊盛阳, 许鹏程, 宋恒旭, 胡剑桥, 冯业为. 深空探测自主运行的一种可信性技术体系[J]. 空间科学学报, 2024, 44(2): 228-240. doi: 10.11728/cjss2024.02.2023-0138
引用本文: 党炜, 骆军委, 郑作环, 敖亮, 李博, 李鹏, 熊盛阳, 许鹏程, 宋恒旭, 胡剑桥, 冯业为. 深空探测自主运行的一种可信性技术体系[J]. 空间科学学报, 2024, 44(2): 228-240. doi: 10.11728/cjss2024.02.2023-0138
DANG Wei, LUO Junwei, ZHENG Zuohuan, AO Liang, LI Bo, LI Peng, XIONG Shengyang, XU Pengcheng, SONG Hengxu, HU Jianqiao, FENG Yewei. Dependability Technology System for Autonomous Operation of Deep Space Exploration (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 228-240 doi: 10.11728/cjss2024.02.2023-0138
Citation: DANG Wei, LUO Junwei, ZHENG Zuohuan, AO Liang, LI Bo, LI Peng, XIONG Shengyang, XU Pengcheng, SONG Hengxu, HU Jianqiao, FENG Yewei. Dependability Technology System for Autonomous Operation of Deep Space Exploration (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 228-240 doi: 10.11728/cjss2024.02.2023-0138

深空探测自主运行的一种可信性技术体系

doi: 10.11728/cjss2024.02.2023-0138 cstr: 32142.14.cjss2024.02.2023-0138
基金项目: 中国空间站工程应用与发展阶段空间应用系统总体专项(T014191), 国家重点研发计划项目(2022YFF0610100), 中国科学院战略性先导科技专项(XDA30000000), 中国科学院关键技术人才项目(T103201), 中国科学院可靠性保障中心种子基金项目(CRAC-ZZKT-KY-2022-03)共同资助
详细信息
    作者简介:
    • 党炜:男, 1982年10月出生于陕西省富平县, 现为中国科学院空间应用工程与技术中心正高级工程师、责任科学家, 中国科学院可靠性保障中心总工程师等, 主要研究方向为可靠性系统工程、COTS元器件空间应用等. E-mail: dangwei@csu.ac.cn
  • 中图分类号: V524

Dependability Technology System for Autonomous Operation of Deep Space Exploration

  • 摘要: 未认知与不确定性是深空探测任务的基本特征. 本文基于战略导向的体系化基础研究, 建立了一种面向科学价值最大化的探测场景和以可靠性为核心技术基础的深空探测自主运行可信性技术体系. 分析研究了深空探测场景下的可靠性概念; 面向精确感知、最优计算、准确决策、快精准执行的目标要素, 提出了深空探测自主运行的可信性体系框架以及“需求-认知-工程”总体技术架构; 针对自主运行可信性的关键技术难点, 开展了可靠性导向的多物理场、强耦合白盒建模, 复杂网络故障传播机制分析, COTS元器件深空探测应用的高可靠保证, 以及“模型+数据+知识”一体的融合机制分析等研究. 对该技术体系的关键技术验证策略及其最小系统在卫星星座中的应用进行了验证, 结果表明, 所提出的技术体系具有较高的工程价值.

     

  • 图  1  需求导向的粗/精协同运行架构

    Figure  1.  Operating architecture of demand-oriented “coarse/precise collaboration”

    图  2  DMAODSE的“需求-认知-工程”总体技术架构

    Figure  2.  General technology architecture of “demand-cognition-engineering” for DMAODSE

    图  3  COTS元器件空间应用发展历程及趋势分析

    Figure  3.  Development history and trends of COTS components used in space applications

    图  4  DRO-G-DMAODSEmin配置项运行架构

    Figure  4.  Operating architecture of DRO-G-DMAODSEmin configuration item

    表  1  经典可靠性定义在深空探测场景中的适用性分析

    Table  1.   Availability analysis for classic definition of reliability in deep space exploration scenarios

    定义要素经典定义本文场景适用性分析说明
    对象设备适用具体为探测器系统
    条件规定的条件不完全适用存在无法规定的未认知、不确定性的条件
    时间规定的时间不完全适用深空探测科学任务自主运行按需尽可能长
    功能规定功能适用
    能力完成能力适用
    下载: 导出CSV

    表  2  “抢时间”需求导向的DMAODSE关键技术难点分析

    Table  2.   Analysis of key technical difficulties in time margin oriented DMAODSE

    应用场景需求 目标要素 策略 技术风险或难点
    抢时间需求粗精协同策略 精确感知 可靠性导向的白盒模型(R-WBM) 模型如何实现“高保真”
    最优计算 复杂网络模型及其故障传播机制 模型如何实现高置信
    先进COTS元器件的深空应用 系统如何实现高可靠
    准确决策 “模型+数据+知识”三位一体融合 决策如何提高准确性
    快精准执行 继承成熟机制
    下载: 导出CSV

    表  3  DMAODSE关键技术验证平台与方法

    Table  3.   Verification platforms and methods for key technologies of DMAODSE

    目标要素 验证关键技术 验证平台 验证方法
    精确感知 可靠性导向的白盒模型(R-WBM) 中国空间站应用22号指南 理论与实验
    最优计算 复杂网络模型及其故障传播机制 地面 理论与试验
    先进COTS元器件的深空应用 中国空间站应用、DRO星座 理论与试验
    准确决策 “模型+数据+知识”三位一体融合 地面、DRO星座 理论、实验与试验
    快精准执行 继承成熟机制
    下载: 导出CSV

    表  4  典型模拟数据下的DRO-G-DMAODSEmin配置项诊断性能评价

    Table  4.   Diagnostic performance evaluation of DRO-G-DMAODSEmin configuration item under typical simulation data

    典型方法 准确率 精确率 召回率
    Deep forest 0.9773 0.9457 0.9330
    Random forest 0.9785 0.9512 0.9355
    LightGBM 0.9797 0.9338 0.9528
    XGBoost 0.9821 0.9371 0.9642
    下载: 导出CSV
  • [1] 吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1): 5-17

    WU Weiren, YU Dengyun. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17
    [2] 刘继忠, 胡朝斌, 庞涪川, 等. 深空探测发展战略研究[J]. 中国科学: 技术科学, 2020, 50(9): 1126-1139 doi: 10.1360/SST-2020-0207

    LIU Jizhong, HU Chaobin, PANG Fuchuan, et al. Strategy of deep space exploration[J]. Scientia Sinica Technologica, 2020, 50(9): 1126-1139 doi: 10.1360/SST-2020-0207
    [3] 陈泽煜, 贺永宁, 宋宁, 等. 美国阿尔忒弥斯载人登月计划进展[J]. 空间电子技术, 2022, 19(6): 75-84 doi: 10.3969/j.issn.1674-7135.2022.06.011

    CHEN Zeyu, HE Yongning, SONG Ning, et al. Progress of the U. S. Artemis lunar program[J]. Space Electronic Technology, 2022, 19(6): 75-84 doi: 10.3969/j.issn.1674-7135.2022.06.011
    [4] 王大轶, 孟林智, 叶培建, 等. 深空探测器的自主运行技术研究[J]. 航天器工程, 2018, 27(6): 1-10 doi: 10.3969/j.issn.1673-8748.2018.06.001

    WANG Dayi, MENG Linzhi, YE Peijian, et al. Research of autonomous operation technology for deep space probe[J]. Spacecraft Engineering, 2018, 27(6): 1-10 doi: 10.3969/j.issn.1673-8748.2018.06.001
    [5] 吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学: 信息科学, 2019, 49(1): 1-16 doi: 10.1360/N112018-00273

    WU Weiren, YU Dengyun, HUANG Jiangchuan, et al. Exploring the solar system boundary[J]. Scientia Sinica Informationis, 2019, 49(1): 1-16 doi: 10.1360/N112018-00273
    [6] 于登云, 马继楠. 中国深空探测进展与展望[J]. 前瞻科技, 2022, 1(1): 17-27 doi: 10.3981/j.issn.2097-0781.2022.01.002

    YU Dengyun, MA Jinan. Progress and prospect of deep space exploration in China[J]. Science and Technology Foresight, 2022, 1(1): 17-27 doi: 10.3981/j.issn.2097-0781.2022.01.002
    [7] Artemis Plan: NASA’s Lunar Exploration Program Overview[Z]. Washington: National Aeronautics and Space Administration, 2020
    [8] 于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(2): 108-113

    YU Dengyun, SUN Zezhou, MENG Linzhi, et al. The development process and prospects for mars exploration[J]. Journal of Deep Space Exploration, 2016, 3(2): 108-113
    [9] 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1): 13-28

    CUI Pingyuan, XU Rui, ZHU Shengying, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 13-28
    [10] 叶培建, 孟林智, 马继楠, 等. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6(4): 303-316,383

    YE Peijian, MENG Linzhi, MA Jinan, et al. Suggestions on artificial intelligence technology application and development in deep space exploration[J]. Journal of Deep Space Exploration, 2019, 6(4): 303-316,383
    [11] 徐瑞, 李朝玉, 朱圣英, 等. 深空探测器自主规划技术研究进展[J]. 深空探测学报(中英文), 2021, 8(2): 111-123

    XU Rui, LI Zhaoyu, ZHU Shengying, et al. Research progress of autonomous planning technology for deep space probes[J]. Journal of Deep Space Exploration, 2021, 8(2): 111-123
    [12] 王明远, 王美, 平劲松, 等. 月球空间环境研究进展[J]. 深空探测学报(中英文), 2021, 8(5): 486-494

    WANG Mingyuan, WANG Mei, PING Jinsong, et al. A review of lunar space environment study[J]. Journal of Deep Space Exploration, 2021, 8(5): 486-494
    [13] 吴伟仁, 王赤, 刘洋, 等. 深空探测之前沿科学问题探析[J]. 科学通报, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667

    WU Weiren, WANG Chi, LIU Yang, et al. Frontier scientific questions in deep space exploration[J]. Chinese Science Bulletin, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667
    [14] 于国斌. 深空探测任务协同的系统工程方法应用及趋势[J]. 深空探测学报(中英文), 2021, 8(4): 407-415

    YU Guobin. Application and trend of model-based systems engineering methods for deep space exploration mission[J]. Journal of Deep Space Exploration, 2021, 8(4): 407-415
    [15] 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 25000.10-2016 系统与软件工程 系统与软件质量要求和评价(SQuaRE) 第10部分: 系统与软件质量模型[S]. 北京: 中国标准出版社, 2016

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 25000.10-2016 Systems and software engineering—systems and software quality requirements and evaluation (SQuaRE)—Part 10: system and software quality models[S]. Beijing: Standards Press of China, 2016
    [16] IEC. IEC 60050-192: 2015 International Electrotechnical Vocabulary (IEV) - Part 192: Dependability[S]. Switzerland: International Electrotechnical Commission Publishing Office, IEC, 2015
    [17] NASA. NASA-HDBK-8709.22, Safety and Mission Assurance ACRONYMS, Abbreviations, and Definitions[S]. Washington DC: National Aeronautics and Space Administration, 2018
    [18] JONES H W. Improving reliability and maintainability (R&M) in space life support[C]//Proceedings of the 48th International Conference on Environmental Systems. Albuquerque: Albuquerque: International Conference on Environmental Systems, Inc., 2018: 1-15
    [19] 杨为民. 可靠性·维修性·保障性总论[M]. 北京: 国防工业出版社, 1995

    YANG Weimin. Reliability, Maintainability, and Supportability[M]. Beijing: National Defense Industry Press, 1995
    [20] 中国人民解放军总装备部. GJB 1405A-2006 装备质量管理术语[S]. 2006

    The General Equipment Department of the People’s Liberation Army of China. GJB 1405A-2006 Terms for equipments quality management[S]. 2006
    [21] 高强, 潘恩荣. 中西方工程哲学自立自强之路比较研究——以“工程”概念研究为例[J]. 工程研究——跨学科视野中的工程, 2022, 14(4): 266-275 doi: 10.3724/j.issn.1674-4969.22061201

    GAO Qiang, PAN Enrong. A comparative analysis of the self-reliant and self-strengthening path of Chinese and western philosophy of engineering: take concept research of engineering as an example[J]. Journal of Engineering Stu dies, 2022, 14(4): 266-275 doi: 10.3724/j.issn.1674-4969.22061201
    [22] 康锐, 王自力. 可靠性系统工程理论研究回顾与展望[J]. 航空学报, 2022, 43(10): 527505

    KANG Rui, WANG Zili. Reliability systems engineering: a research review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527505
    [23] 王大轶, 屠园园, 张香燕, 等. 空间飞行器自主诊断重构的理论和方法[J]. 宇航学报, 2023, 44(4): 546-557

    WANG Dayi, TU Yuanyuan, ZHANG Xiangyan, et al. Theory and method of autonomous fault diagnosis and system reconfiguration for spacecraft[J]. Journal of Astronau tics, 2023, 44(4): 546-557
    [24] NASA Headquarters. NASA Methodology for Physics of Failure-Based Reliability Assessments Handbook[R]. Washington: National Aeronautics and Space Administration, 2023
    [25] 于志亮, 周乃新, 陈兴林, 等. 星间激光通信系统粗精复合扫描技术[J]. 国防科技大学学报, 2016, 38(5): 158-162 doi: 10.11887/j.cn.201605025

    YU Zhiliang, ZHOU Naixin, CHEN Xinglin, et al. Research on coarse-fine composite technology for scanning in inter-satellite laser communication[J]. Journal of National University of Defense Technology, 2016, 38(5): 158-162 doi: 10.11887/j.cn.201605025
    [26] 尉强, 刘忠. 一种粗-精结合的航天侦察航迹关联算法[J]. 雷达科学与技术, 2017, 15(1): 29-34

    WEI Qiang, LIU Zhong. A track correlation algorithm of space-based reconnaissance based on rough and precise correlations[J]. Radar Science and Technology, 2017, 15(1): 29-34
    [27] 章辉. 面向空间光学载荷的粗精并联式指向及稳定一体化技术研究[D]. 长春: 中国科学院大学, 2023

    ZHANG Hui. Research on Pointing and Stabilization Technology of Optical Space Payload for Parallel Integration of Coarse and Fine Actuators[D]. Changchun: University of Chinese Academy of Sciences, 2023
    [28] 曾婵, 李卫民, 毕波. 高动态GPS信号粗捕和精捕算法仿真实现[J]. 北京航空航天大学学报, 2017, 43(4): 790-799

    ZENG Chan, LI Weimin, BI Bo. Simulation realization of high dynamic GPS signal coarse acquisition and fine acquisition algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 790-799
    [29] 罗磊, 唐利斌, 左文彬. 紫外增强图像传感器的研究进展[J]. 红外技术, 2021, 43(11): 1023-1033

    LUO Lei, TANG Libin, ZUO Wenbin. Research progress in ultraviolet enhanced image sensors[J]. Infrared Technology, 2021, 43(11): 1023-1033
    [30] 刘桐君, 叶慧琪, 唐靓, 等. 天文光谱高精度波长定标技术研究进展[J]. 光子学报, 2023, 52(5): 0552203 doi: 10.3788/gzxb20235205.0552203

    LIU Tongjun, YE Huiqi, TANG Liang, et al. Research advance in astronomical high-precision wavelength calibration technology[J]. Acta Photonica Sinica, 2023, 52(5): 0552203 doi: 10.3788/gzxb20235205.0552203
    [31] 马传震, 刘赫男, 陈明君, 等. 半球谐振子关键性能及制造工艺研究新进展[J]. 机械工程学报, 2023, 59: 1-19

    MA Chuanzhen, LIU Henan, CHEN Mingjun, et al. Research progress on key property and manufacturing technology of hemispherical resonator[J]. Journal of Mechanical Engineering, 2023, 59: 1-19
    [32] FIGUEROA F, UNDERWOOD L, WALKER M G, et al. NASA Platform for Autonomous Systems (NPAS)[C]. AIAA SciTech 2019. San Diego: AIAA, 2019: 1262-1276
    [33] FIGUEROA F, UNDERWOOD L, MORRIS J, et al. Risk-reduction autonomy implementation to enable NASA Artemis missions[C]//Proceedings of 2022 IEEE Aerospace Conference. Big Sky: IEEE, 2022: 1-13
    [34] HODSON R F, CHEN Y, PANDOLF J E, et al. Recommendations on Use of Commercial-Off-the-Shelf (COTS) Electrical, Electronic, and Electromechanical (EEE) Parts for NASA Missions[R]. Hampton: National Aeronautics and Space Administration, Langley Research Center, 2020
    [35] CAMPOLA M J. Radiation hardness assurance (RHA): challenges and new considerations[C]//Proceedings of Microelectronics Reliability and Qualification Working Meeting. El Segundo: NASA, 2017
    [36] PELLISH J. Commercial Off-the-Shelf (COTS) Electronics Reliability for Space Applications[R]. Maryland: National Aeronautics and Space Administration, Goddard Space Flight Center, 2018
    [37] WEN Z, WEI D, LIANG A, et al. A theoretical framework of COTS components space application based on “risk information entropy”[C]//Proceedings of the 2022 4th International Conference on System Reliability and Safety Engineering. Guangzhou: IEEE, 2022: 353-357.
    [38] XIA W F, WANG Y H, HAO Y C. Modeling failure propagation to analyze the vulnerability of the complex electromechanical systems under network attacks[J]. Phy sica A: Statistical Mechanics and its Applications, 2023, 613: 128514 doi: 10.1016/j.physa.2023.128514
    [39] 王勉宇. 基于图论的过程故障诊断研究[D]. 杭州: 浙江大学, 2002

    WANG Mianyu. Process Fault Diagnosis Based on Graph Theory[D]. Hangzhou: Zhejiang University, 2002
    [40] 刘涛, 陈忠, 陈晓荣. 复杂网络理论及其应用研究概述[J]. 系统工程, 2005, 23(6): 1-7 doi: 10.3969/j.issn.1001-4098.2005.06.001

    LIU Tao, CHEN Zhong, CHEN Xiaorong. A brief review of complex networks and its application[J]. Systems Engineering, 2005, 23(6): 1-7 doi: 10.3969/j.issn.1001-4098.2005.06.001
    [41] ARNOLD V I. Geometrical Methods in the Theory of Ordinary Differential Equations[M]. New York: Springer, 1983
    [42] 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 19001-2016 质量管理体系要求[S]. 北京: 中国标准出版社, 2016

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 19001-2016 Quality management systems—requirements[S]. Beijing: Standards Press of China, 2016
    [43] 杨为民, 盛一兴. 系统可靠性数字仿真[M]. 北京: 北京航空航天大学出版社, 1990

    YANG Weimin, SHENG Yixing. Digital Simulation of System Reliability[M]. Beijing: Beihang University Press, 1990
    [44] WANG Z L. Current status and prospects of reliability systems engineering in China[J]. Frontiers of Engineering Management, 2021, 8(4): 492-502. doi: 10.1007/s42524-021-0172-2
    [45] LINDSEY N J, ALIMARDANI M, GALLO L D. Reliability analysis of complex NASA systems with model-based engineering[C]//Proceedings of 2020 Annual Reliability and Maintainability Symposium. Palm Springs: IEEE, 2020: 1-8
    [46] 尚玉叶, 袁家斌. 深空环境中基于云边端协同的任务卸载方法[J]. 计算机科学, 2023, 50(2): 80-88 doi: 10.11896/jsjkx.220800156

    SHANG Yuye, YUAN Jiabin. Task offloading method based on cloud-edge-end cooperation in deep space environment[J]. Computer Science, 2023, 50(2): 80-88 doi: 10.11896/jsjkx.220800156
    [47] 中国载人航天工程办公室. 空间站应用与发展工程空间科学与应用项目指南(V1.0)[R]. 北京: 中国载人航天工程办公室, 2023. https://www.cmse.gov.cn/gfgg/202306/W020230629432887860164.pdf

    China Manned Space Engineering Office. Space Science and Applications Project Guide for Space Station Applications and Development Engineering (V1.0)[M]. Beijing: China Manned Space Engineering Office, 2023. https://www.cmse.gov.cn/gfgg/202306/W020230629432887860164.pdf
    [48] XU T. A Multiphysics single event effect modeling method based on machine learning for semiconductor devices[C]//Proceedings of the 7th Sino MOS-AK Workshop. Nanjing: MOS-AK, 2023: 17-19
    [49] 党炜, 孙惠中, 李瑞莹, 等. COTS器件空间应用的可靠性保证技术研究[J]. 电子学报, 2009, 37(11): 2589-2594 doi: 10.3321/j.issn:0372-2112.2009.11.042

    DANG Wei, SUN Huizhong, LI Ruiying, et al. Research on reliability assurance of COTS components in space application[J]. Acta Electronica Sinica, 2009, 37(11): 2589-2594 doi: 10.3321/j.issn:0372-2112.2009.11.042
    [50] 党炜. COTS应用于空间辐射环境的可靠性研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2007

    DANG Wei. Reliability Study on COTS Used in Space Radiation Environment[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2007
    [51] 邹田骥, 李鹏, 李丹, 等. COTS器件空间应用可靠性保证体系实践[J]. 中国质量, 2018(8): 83-88

    ZOU Tianji, LI Peng, LI Dan, et al. Practice of COTS device reliability assurance system for space application[J]. China Quality, 2018(8): 83-88
    [52] 党炜, 李鹏, 敖亮, 等. 一种基于多胞胎身心感应的航天器智能自主健康管理系统: 中国, 116578905A[P]. 2023-08-11

    DANG Wei, LI Peng, AO Liang, et al. A spacecraft intelligent autonomous health management system based on multiple births mind-body sensing: CN, 116578905A[P]. 2023-08-11
    [53] 李霜琳, 蒲京辉, 郭鹏斌, 等. DRO卫星编队同波束差分相对导航[J]. 深空探测学报(中英文), 2023, 10(2): 211-219

    LI Shuanglin, PU Jinghui, GUO Pengbin, et al. Single-beam differential relative navigation of DRO satellite formation[J]. Journal of Deep Space Exploration, 2023, 10(2): 211-219
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1753
  • HTML全文浏览量:  320
  • PDF下载量:  162
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-11-28
  • 录用日期:  2024-03-27
  • 修回日期:  2024-03-21
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回