留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

QX-1 GNOS M掩星数据质量分析

刘智勇 刘森 王玺 张水平

刘智勇, 刘森, 王玺, 张水平. QX-1 GNOS M掩星数据质量分析[J]. 空间科学学报, 2024, 44(3): 585-591. doi: 10.11728/cjss2024.03.2023-0071
引用本文: 刘智勇, 刘森, 王玺, 张水平. QX-1 GNOS M掩星数据质量分析[J]. 空间科学学报, 2024, 44(3): 585-591. doi: 10.11728/cjss2024.03.2023-0071
LIU Zhiyong, LIU Sen, WANG Xi, ZHANG Shuiping. QX-1 GNOS M Radio Occultation Data Performance Analysis (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 585-591 doi: 10.11728/cjss2024.03.2023-0071
Citation: LIU Zhiyong, LIU Sen, WANG Xi, ZHANG Shuiping. QX-1 GNOS M Radio Occultation Data Performance Analysis (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 585-591 doi: 10.11728/cjss2024.03.2023-0071

QX-1 GNOS M掩星数据质量分析

doi: 10.11728/cjss2024.03.2023-0071 cstr: 32142.14.cjss2024.03.2023-0071
详细信息
    作者简介:
    • 刘智勇 男, 1982年出生于黑龙江省哈尔滨市, 现为武汉大学遥感信息工程学院在读博士研究生, 工程师, 主要从事资源与环境、遥感卫星图像智能处理等领域工作. E-mail: bear2001321@163.com
    通讯作者:
    • 刘森 1983年出生于河南省郑州市, 航天东方红卫星有限公司项目副经理, 高级工程师, 主要从事电子与微波类卫星总体设计、产品保证等领域工作. E-mail: HITUFO@foxmail.COM
  • 中图分类号: P356

QX-1 GNOS M Radio Occultation Data Performance Analysis

  • 摘要: QX-1 GNOS M是首台在轨实现北斗、GPS和Galileo三系统兼容的小型商业化全球导航卫星掩星探测仪. 2021年10月14日18:51 LT, 气象一号(QX-1)卫星发射并入轨. 自发射以来, 该卫星已收集大量观测数据. 基于QX-1 GNOS M的结构组成及性能, 统计分析了2022年8月17日全天的掩星事件及其全球分布情况. 通过将8月17日至9月3日的掩星数据与NCEP再分析模式对比, 评估QX-1掩星事件的探测穿透深度和折射率精度, 同时检验Galileo掩星数据的可靠性和一致性. 初步分析结果表明, QX-1 GNOS M在实现三系统兼容后, 掩星事件数量相较于仅使用GPS系统的情况增加了约1.5倍. 这一结果进一步证明, 不同全球导航卫星系统(GNSS)所提供的掩星数据在精度上具有一致性. 此外研究显示, 在多系统兼容的背景下, QX-1 GNOS M能够提供更为丰富和精确的气象数据.

     

  • 图  1  2022年8月17日QX-1 GNOS M/北斗/GPS/Galileo掩星事件全球分布情况

    Figure  1.  Distribution of the QX-1 GNSS M RO events for BDS, GPS and Galileo systems on 17 August 2022

    图  2  2022年8月17日QX-1 GNOS M/北斗/GPS/Galileo掩星事件统计分析

    Figure  2.  Histogram of the QX-1 GNSS M RO events for BDS, GPS and Galileo systems on 17 August 2022

    图  3  2022年8月17日至9月3日期间 QX-1 GNOS M/BDS/GPS/Galileo日掩星事件

    Figure  3.  RO events per day of QX-1 GNOS M/BDS/GPS/Galileo from 17 August to 3 September 2022

    图  4  2022年8月17至9月3日QX-1 GNOS M/BDS/GPS/Galileo掩星事件全球分布及穿透深度

    Figure  4.  Distribution of RO events and their lowest penetration height of QX-1 GNOS M/BDS/GPS/Galileo occultation events from 17 August to 3 September on 2022

    图  5  2022年8月17至9月3日QX-1 GNOS M/BDS/GPS/Galileo掩星折射率误差廓线

    Figure  5.  Statistical comparison among QX-1 GNOS M/BDS/GPS/Galileo RO refractivity profiles taking NCEP FNL reanalysis model as reference atmospheric data from 17 August to 3 September in 2022

    图  6  QX-1 GNOS M GNSS掩星折射率同化结果

    Figure  6.  Evaluation score card of the effects of the QX-1 GNOS M data on the GRAPES forecast results

  • [1] ROCKEN C, ANTHES R, EXNER M, et al. Analysis and validation of GPS/MET data in the neutral atmosphere[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D25): 29849-29866 doi: 10.1029/97JD02400
    [2] WICERT J, BEYERLE G, KONIG R, et al. GPS radio occultation with CHAMP and GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding[J]. Annales Geophysicae: Atmospheres, Hydrospheres and Space Sciences, 2005, 23(3): 653-658
    [3] 仇通胜. 基于北斗三号的无线电掩星接收机信号处理关键技术研究[D]. 北京: 中国科学院大学, 2021. DOI: 10.27562/d.cnki.gkyyz.2021.000015

    QIU Tongsheng. Study on Key Technique of Signal Processing for BDS-3 Based Radio Occultation Receiver[D]. Beijing: University of Chinese Academy of Sciences, 2021. DOI: 10.27562/d.cnki.gkyyz.2021.000015
    [4] ANTHES R A, BERNHARDT P A, CHEN Y, et al. The COSMIC/FORMOSAT-3 Mission: Early results[J]. Bulle tin of the American Meteorological Society, 2008, 89(3): 313-334 doi: 10.1175/BAMS-89-3-313
    [5] KUO Y H, SCHREINER W S, WANG J, et al. Comparison of GPS radio occultation soundings with radiosondes[J]. Geophysical Research Letters, 2005, 32(5). DOI: 10.1029/2004GL021443
    [6] SCHREINER W S, WEISS J P, ANTHES R A, et al. COSMIC‐2 radio occultation constellation: first results[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086841 doi: 10.1029/2019GL086841
    [7] IURII C, IRINA Z, JOHN B, et al. Accuracy assessment of the quiet-time ionospheric F2 peak parameters as derived from COSMIC-2 multi-GNSS radio occultation measurements[J]. Journal of Space Weather and Space Climate, 2021, 11
    [8] LI Y, KIRCHENGAST G, SCHERLLIN-PIRSCHER B, et al. Dynamic statistical optimization of GNSS radio occultation bending angles: Advanced algorithm and performance analysis[J]. Atmospheric Measurement Techniques, 2015, 8(8): 3447-3465 doi: 10.5194/amt-8-3447-2015
    [9] BAI W H, SUN Y Q, DU Q F, et al. An introduction to the FY3 GNOS instrument and mountain-top tests[J]. Atmospheric Measurement Techniques, 2014, 7(6): 1817-1823 doi: 10.5194/amt-7-1817-2014
    [10] SUN Y Q, BAI W H, LIU C L, et al. The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5797-5811 doi: 10.5194/amt-11-5797-2018
    [11] WEI J D, LI Y ZHANG K F, et al. An evaluation of Fengyun-3C radio occultation atmospheric profiles over 2015-2018[J]. Remote Sensing, 2020, 12(13): 2116 doi: 10.3390/rs12132116
    [12] LIU Z Y, SUN Y Q, BAI W H, et al. Validation of preliminary results of thermal tropopause derived from FY-3C GNOS data[J]. Remote Sensing, 2019, 11(9): 1139 doi: 10.3390/rs11091139
    [13] 王树志, 朱光武, 白伟华, 等. 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测[J]. 物理学报, 2015, 64(8): 089301 doi: 10.7498/aps.64.089301

    WANG Shuzhi, ZHU Guangwu, BAI Weihua, et al. For the first time Fengyun-3C satellite-global navigation satellite system occultation sounder achieved spaceborne BeiDou system radio occultation[J]. Acta Physica Sinica, 2015, 64(8): 089301 doi: 10.7498/aps.64.089301
    [14] LIAO M, ZHANG P, YANG G L, et al. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C[J]. Atmospheric Measurement Techniques, 2016, 9(2): 781-792 doi: 10.5194/amt-9-781-2016
    [15] 廖蜜, 张鹏, 刘健, 等. 风云卫星的掩星干大气温度廓线精准度特征[J]. 应用气象学报, 2023, 34(3): 270-281

    LIAO Mi, ZHANG Peng, LIU Jian, et al. Accuracy and stability of radio occultation dry temperature profiles from Fengyun satellite[J]. Journal of Applied Meteorological Science, 2023, 34(3): 270-281
    [16] 刘艳, 孟祥广, 白伟华, 等. FY-3D卫星的北斗掩星分布特征与误差特性[J]. 空间科学学报, 2022, 42(3): 476-484 doi: 10.11728/cjss2022.03.210208019

    LIU Yan, MENG Xiangguang, BAI Weihua, et al. Analysis of Beidou Radio Occultation Data from FY-3D Satellite[J]. Chinese Journal of Space Science, 2022, 42(3): 476-484 doi: 10.11728/cjss2022.03.210208019
    [17] HUANG F X, XIA J M, YIN C, et al. Assessment of FY-3E GNOS II GNSS-R global wind product[J]. IEEE Jour nal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 7899-7912. doi: 10.1109/JSTARS.2022.3205331
    [18] 杨光林, 孙越强, 白伟华, 等. 风云三号C星GNOS北斗掩星电离层探测初步结果[J]. 空间科学学报, 2019, 39(1): 36-45 doi: 10.11728/cjss2019.01.036

    YANG Guanglin, SUN Yueqiang, BAI Weihua, et al. Beidou navigation satellite system sounding of the ionosphere from FY-3C GNOS: preliminary results[J]. Chinese Journal of Space Science, 2019, 39(1): 36-45 doi: 10.11728/cjss2019.01.036
    [19] DU Q F, SUN Y Q, BAI W H, et al. The on-orbit performance of FY-3D GNOS[C]//International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 7669-7671
    [20] ZHANG H, HUANGFU J, WANG X, et al. Comparative analysis of Binhu and Cosmic-2 radio occultation data[J]. Remote Sensing, 2022, 14(19): 4958 doi: 10.3390/rs14194958
    [21] BEYERLE G, SCHMIDT T, MICHALAK G, et al. GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique[J]. Geophysical Research Letters, 2005, 32(13): L13806
  • 加载中
图(6)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  148
  • PDF下载量:  50
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-07-03
  • 录用日期:  2024-05-13
  • 修回日期:  2023-08-23
  • 网络出版日期:  2023-09-25

目录

    /

    返回文章
    返回