留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共线平动点中心流形上的轨道转移问题

杨富涛 张汉清

杨富涛, 张汉清. 共线平动点中心流形上的轨道转移问题[J]. 空间科学学报, 2024, 44(3): 556-569. doi: 10.11728/cjss2024.03.2023-0098
引用本文: 杨富涛, 张汉清. 共线平动点中心流形上的轨道转移问题[J]. 空间科学学报, 2024, 44(3): 556-569. doi: 10.11728/cjss2024.03.2023-0098
YANG Futao, ZHANG Hanqing. Orbital Transfer Problem on the Central Manifold of Libration Points (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 556-569 doi: 10.11728/cjss2024.03.2023-0098
Citation: YANG Futao, ZHANG Hanqing. Orbital Transfer Problem on the Central Manifold of Libration Points (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 556-569 doi: 10.11728/cjss2024.03.2023-0098

共线平动点中心流形上的轨道转移问题

doi: 10.11728/cjss2024.03.2023-0098 cstr: 32142.14.cjss2024.03.2023-0098
详细信息
    作者简介:
    • 杨富涛 男, 1999年11月出生于四川省宜宾市, 毕业于南京航空航天大学航天学院, 硕士研究生, 主要从事深空探测轨道动力学以及飞行器控制等方面的研究. E-mail: tt18284863524@163.com
    • 张汉清 男, 1980年11月出生于河南省开封市, 现为南京航空航天大学航天学院讲师, 硕士生导师, 主要从事深空探测轨道动力学等方面的研究. 本文通信作者. E-mail: hanqing@nuaa.edu.cn
  • 中图分类号: V412.41

Orbital Transfer Problem on the Central Manifold of Libration Points

  • 摘要: 圆形限制性三体问题共线平动点附近的平动点轨道由于其独特的动力学特性, 在深空探测任务中有着重要价值, 这些轨道间的轨道转移问题值得进行系统性研究. 针对平动点轨道的计算与延拓, 提出了一种基于数值的系统性计算平动点轨道的方法以及状态伴随法的轨道稳定维持策略. 在此基础上, 通过对大量平动点轨道不变流形以及平动点相空间中心流形的研究, 设计了一套通过脉冲机动实现平动点轨道间轨道转移的系统性解决方案. 该方法充分利用平动点动力学特性, 在仿真验证中证实了方案的有效性, 为平动点轨道转移研究提供了新的思路.

     

  • 图  1  地月系统平动点区域

    Figure  1.  Translation point area of Earth-Moon system

    图  2  稳定流形(实线)与不稳定流形(虚线)曲线

    Figure  2.  Stable (solid line) and unstable (dotted line) manifold plots

    图  3  平动点轨道三维空间仿真

    Figure  3.  Three-dimensional spatial diagram of LPO

    图  4  选取数据点稳定流形(实线)与不稳定流形(虚线)参数

    Figure  4.  Diagram of stable manifold (solid line) and unstable manifold (dotted line) parameters

    图  5  z=0平面上一点的两条平动点轨道

    Figure  5.  LPO at a point in the plane of z=0

    图  6  空间中对称点稳定流形(实线)与不稳定流形(虚线)参数

    Figure  6.  Stable (solid line) and unstable manifold (dotted line) parameters at symmetrical points in space

    图  7  关于z=0平面对称数据点平动点轨道

    Figure  7.  LPO for z=0 planar symmetric data point

    图  8  z=0庞加莱截面

    Figure  8.  Poincaré cross-section of z=0

    图  9  z=i庞加莱截面

    Figure  9.  Poincaré cross-section of z=i

    图  10  李萨如轨道的轨道转移

    Figure  10.  Orbital transfer of Lissajours

    图  11  不同族的quasihalo

    Figure  11.  Quasihalo of different families

    图  12  庞加莱截面交点求取(z=0.0097)

    Figure  12.  Intersection point of Poincaré cross-section

    图  13  不同族quasihalo间轨道转移

    Figure  13.  Orbit transfer for quasihalo of different family

    图  14  转移轨道庞加莱截面

    Figure  14.  Poincaré cross-section of transfer orbits

    图  15  轨道转移速度量变化

    Figure  15.  Speed varies of orbit transfer

    图  16  借助中间轨道的轨道转移

    Figure  16.  Orbit transfer by intermediate orbit

    图  17  地月系统L2点南北晕轨道转移

    Figure  17.  Orbital transfer between the north-halo and south-halo orbits at L2 points of the Earth-Moon system

    图  18  地月系统L1点同族晕轨道转移

    Figure  18.  Orbital transfer between the halo orbital family at L1 points of the Earth-Moon system

    图  19  文献[15]的近似转移

    Figure  19.  Approximate transfer of Ref.[15]

    表  1  平动点轨道初始状态与校正k

    Table  1.   Initial state of the translational point track with corrected k-value

    初始状态 (x0, y0, z0, α, β)=(0.84, 0.02, 0, 2.92, 1.17)
    δ=0.00005
    校正次数k校正次数k
    1–1.017×10–108–4.62×10–11
    2–3.447×10–991.142×10–7
    31.783×10–710–2.903×10–6
    4–4.545×10–9113.615×10–11
    52.158×10–712–8.679×10–8
    64.728×10–8132.455×10–6
    7–1.281×10–6141.988×10–8
    下载: 导出CSV

    表  2  南北晕轨道转移参数

    Table  2.   Orbital transfer parameter between the north-halo and south-halo orbits

    转移参数转移时间/d总Δv /(m⋅s–1)
    文献数据39.06488.342
    直接转移0427.325
    间接转移20.87569.808
    下载: 导出CSV

    表  3  同族晕轨道间转移参数

    Table  3.   Orbital transfer parameter between the halo orbital family

    转移参数转移时间/d总Δv /(m⋅s–1)
    文献数据7.3048882.766
    间接转移26.7843545.899
    下载: 导出CSV
  • [1] 雷汉伦, 徐波. 小推力限制性三体系统下稳定平动点附近的高阶解[J]. 中国科学: 技术科学, 2015, 45(11): 1207-1217 doi: 10.1360/N092014-00257

    LEI Hanlun, XU Bo. High-order solutions around the stable libration points in the low-thrust restricted three-body system[J]. Scientia Sinica Technologica, 2015, 45(11): 1207-1217 doi: 10.1360/N092014-00257
    [2] BOOKLESS J, MCINNES C. Control of Lagrange point orbits using solar sail propulsion[J]. Acta Astronautica, 2008, 62(2/3): 159-176
    [3] 朱政帆, 高扬. 空间小推力轨道最优Bang-Bang控制的两类延拓解法综述[J]. 深空探测学报, 2017, 4(2): 101-110

    ZHU Zhengfan, GAO Yang. Survey of two classes of continuation methods for solving optimal Bang-Bang control of low-thrust space trajectories[J]. Journal of Deep Space Exploration, 2017, 4(2): 101-110
    [4] KULUMANI S, LEE T. Systematic design of optimal low-thrust transfers for the three-body problem[J]. The Journal of the Astronautical Sciences, 2019, 66(1): 1-31 doi: 10.1007/s40295-018-00139-y
    [5] 任远, 崔平远, 栾恩杰. 基于标称轨道的小推力轨道设计方法[J]. 吉林大学学报: 工学版, 2006, 36(6): 998-1002

    REN Yuan, CUI Pingyuan, LUAN Enjie. Low-thrust trajectory design method based on nominal orbit[J]. Journal of Jilin University: Engineering and Technology Edition, 2006, 36(6): 998-1002
    [6] HARGRAVES C R, PARIS S W. Direct trajectory optimization using nonlinear programming and collocation[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(4): 338-342 doi: 10.2514/3.20223
    [7] HERMAN A L, CONWAY B A. Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 592-599 doi: 10.2514/3.21662
    [8] 孙军伟, 乔栋, 崔平远. 基于SQP方法的常推力月球软着陆轨道优化方法[J]. 宇航学报, 2006, 27(1): 99-102,112 doi: 10.3321/j.issn:1000-1328.2006.01.021

    SUN Junwei, QIAO Dong, CUI Pingyuan. Study on the optimal trajectories of lunar soft-landing with fixed-thrust using SQP method[J]. Journal of Astronautics, 2006, 27(1): 99-102,112 doi: 10.3321/j.issn:1000-1328.2006.01.021
    [9] 朱建丰, 徐世杰. 基于自适应模拟退火遗传算法的月球软着陆轨道优化[J]. 航空学报, 2007, 28(4): 806-812 doi: 10.3321/j.issn:1000-6893.2007.04.007

    ZHU Jianfeng, XU Shijie. Optimization of lunar soft landing trajectory based on adaptive simulated annealing genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 806-812 doi: 10.3321/j.issn:1000-6893.2007.04.007
    [10] FAHROO F, ROSS I M. Direct trajectory optimization by a Chebyshev pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 160-166 doi: 10.2514/2.4862
    [11] PARK B G, TAHK M J. Three-dimensional trajectory optimization of soft lunar landings from the parking orbit with considerations of the landing site[J]. International Journal of Control, Automation and Systems, 2011, 9(6): 1164-1172 doi: 10.1007/s12555-011-0618-0
    [12] E Z B, GUZZETTI D. Multi-revolution low-thrust trajectory optimization using symplectic methods[J]. Science China Technological Sciences, 2020, 63(3): 506-519 doi: 10.1007/s11431-019-9511-7
    [13] WOOLLANDS R, TAHERI E, JUNKINS L J. Efficient computation of optimal low thrust gravity perturbed orbit transfers[J]. The Journal of the Astronautical Sciences, 2020, 67(2): 458-484 doi: 10.1007/s40295-019-00152-9
    [14] CHUPIN M, HABERKORN T, TRÉLAT E. Low-thrust Lyapunov to Lyapunov and halo to halo missions with L2-minimization[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51(3): 965-996 doi: 10.1051/m2an/2016044
    [15] DU C R, WU K X, STARINOVA O L, et al. Two trajectory configurations for the low-thrust transfer between northern and southern halo orbits in the Earth-Moon system[J]. Advances in Space Research, 2023, 72(10): 4093-4105 doi: 10.1016/j.asr.2023.08.007
    [16] 彭坤, 曾豪, 田林, 等. 小推力航天器的地球—火星转移轨道混合设计方法[J]. 航天返回与遥感, 2020, 41(1): 10-17 doi: 10.3969/j.issn.1009-8518.2020.01.002

    PENG Kun, ZENG Hao, TIAN Lin, et al. Hybrid design method of earth-mars transfer trajectory for low-thrust spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(1): 10-17 doi: 10.3969/j.issn.1009-8518.2020.01.002
    [17] (周敬, 胡军, 韩铭麟. 共线平动点附近小推力轨道转移中的微分修正技术[J]. 中国科学: 技术科学, 2021, 51(2): 207-220 doi: 10.1360/SST-2020-0140

    ZHOU Jing, HU Jun, HAN Minglin. Differential correction method in low-thrust orbit transfers near the collinear libration points[J]. Scientia Sinica Technologica, 2021, 51(2): 207-220 doi: 10.1360/SST-2020-0140
    [18] SANTOS L B T, SOUSA-SILVA P A, TERRA M O, et al. Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system[J]. Advances in Space Research, 2022, 70(11): 3362-3372 doi: 10.1016/j.asr.2022.08.035
    [19] REN Y, SHAN J J. A novel algorithm for generating libration point orbits about the collinear points[J]. Celestial Mechanics and Dynamical Astronomy, 2014, 120(1): 57-75 doi: 10.1007/s10569-014-9560-9
    [20] TITOV V B. Zero-velocity surface in the general three-body-problem[J]. Vestnik St. Petersburg University, Mathematics, 2023, 56(1): 125-133 doi: 10.1134/S1063454123010144
    [21] 张识, 王攀, 张瑞浩, 等. 选取任意庞加莱截面的新方法[J]. 物理学报, 2020, 69(4): 040503 doi: 10.7498/aps.69.20191585

    ZHANG Shi, WANG Pan, ZHANG Ruihao, et al. A new method for selecting arbitrary Poincare section[J]. Acta Physica Sinica, 2020, 69(4): 040503 doi: 10.7498/aps.69.20191585
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  89
  • PDF下载量:  37
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-09-09
  • 录用日期:  2024-05-13
  • 修回日期:  2024-01-30
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回