留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力条件下PCM液桥内固液相变过程及热毛细对流数值模拟

张永春 董文利 孙涛 高胤宇 李至柔 段文豪 周小明

张永春, 董文利, 孙涛, 高胤宇, 李至柔, 段文豪, 周小明. 微重力条件下PCM液桥内固液相变过程及热毛细对流数值模拟[J]. 空间科学学报, 2024, 44(3): 536-543. doi: 10.11728/cjss2024.03.2023-0105
引用本文: 张永春, 董文利, 孙涛, 高胤宇, 李至柔, 段文豪, 周小明. 微重力条件下PCM液桥内固液相变过程及热毛细对流数值模拟[J]. 空间科学学报, 2024, 44(3): 536-543. doi: 10.11728/cjss2024.03.2023-0105
ZHANG Yongchun, DONG Wenli, SUN Tao, GAO Yinyu, LI Zhirou, DUAN Wenhao, ZHOU Xiaoming. Evolution Mechanism of Phase Change Materials Liquid-bridge Phase Transition and Thermocapillary Convection under Microgravity Conditions (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 536-543 doi: 10.11728/cjss2024.03.2023-0105
Citation: ZHANG Yongchun, DONG Wenli, SUN Tao, GAO Yinyu, LI Zhirou, DUAN Wenhao, ZHOU Xiaoming. Evolution Mechanism of Phase Change Materials Liquid-bridge Phase Transition and Thermocapillary Convection under Microgravity Conditions (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 536-543 doi: 10.11728/cjss2024.03.2023-0105

微重力条件下PCM液桥内固液相变过程及热毛细对流数值模拟

doi: 10.11728/cjss2024.03.2023-0105 cstr: 32142.14.cjss2024.03.2023-0105
基金项目: 江苏省重点研发计划(社会发展)项目(BE2021750), 国家市场监管总局科技计划项目(2020MK038)和江苏省特种设备安全监督检验研究院项目(KJ(Y)202409)共同资助
详细信息
    作者简介:
    • 张永春 男, 1982年3月出生于江苏省苏州市, 现为江苏省特种设备安全监督检验研究院(无锡分院)职员, 高级工程师, 主要研究方向为锅炉运行优化及节能减排技术等. E-mail: zh_yongchun@163.com
    通讯作者:
    • 周小明 男, 1981年11月生人. 现为河海大学机电工程学院副教授, 博士生导师, 主要研究方向为微重力流体与传热、储能与热管理等. E-mail: xmzhou@hhu.edu.cn
  • 中图分类号: O351.2

Evolution Mechanism of Phase Change Materials Liquid-bridge Phase Transition and Thermocapillary Convection under Microgravity Conditions

  • 摘要: 为揭示微重力条件下PCM液桥相变过程流动特征及相变演化规律, 建立PCM液桥数理模型, 采用数值模拟的方法系统研究了不同工况下PCM液桥相变过程中固液界面的演化过程, 分析不同高径比和温差对液桥形状、固液界面演化规律、相变速度和热毛细流动的影响. 研究结果显示, 在大温差条件下热毛细流动更加强烈, 处于外部壁面处的相变材料的相变速度也会更快, 外壁处的相变界面与壁面的夹角会更小. 大高径比条件下会有同样的效果, 同时也会产生更多的涡胞结构, 热毛细对流效果更明显. 结果表明, 微重力条件下通过流体界面热毛细效应强化PCM相变是一种有效的方法.

     

  • 图  1  物理模型

    Figure  1.  Physical model

    图  2  网格计算收敛性对比

    Figure  2.  Comparison of grid computing convergence

    图  3  PCM液桥固液相变、温度及流线(r=4 mm, Γ=1)

    Figure  3.  Solid-liquid phase transition, temperature and streamline diagram of PCM liquid bridge (r=4 mm, Γ=1)

    图  4  PCM液桥固液相变、温度及流线(r=4 mm, Γ=2)

    Figure  4.  Solid-liquid phase transition, temperature and streamline diagram of PCM liquid bridge (r=4 mm, Γ=2)

    图  5  PCM液桥固液相变、温度及流线(r=4 mm, ΔT=25 K)

    Figure  5.  Solid-liquid phase transition, temperature and streamline diagram of PCM liquid bridge (r=4 mm, ΔT=25 K)

    图  6  PCM液桥固液相变、温度及流线(r=6 mm, Γ=1)

    Figure  6.  Solid-liquid phase transition, temperature and streamline diagram of PCM liquid bridge (r=6 mm, Γ=1)

    图  7  PCM液桥固液相变、温度及流线(r=6 mm, Γ=2)

    Figure  7.  Solid-liquid phase transition, temperature and streamline diagram of PCM liquid bridge (r=6 mm, Γ=2)

    表  1  相变材料热物性 (T=298 K, P=1.01×105 Pa)

    Table  1.   Thermal properties of phase change material (T=298 K, P=1.01×105 Pa)

    热物性参数 正十八烷
    固相密度ρs/(kg·m–3) 865
    固相比热容Cps/(J·kg–1·K–1) 1934
    固相导热系数λs/(W·m–1·K–1) 0.358
    液相密度ρl/(kg·m–3) 780
    液相比热容Cpl/(J·kg–1·K–1) 2196
    液相导热系数λl/(W·m–1·K–1) 0.148
    动力黏度μ/(Pa·s) 0.00354
    潜热Cl/(kJ·kg–1) 243.5
    表面张力温度系数γT/(N·m–1·K–1) 8.44×10–5
    熔点Tm/K 301
    下载: 导出CSV

    表  2  不同网格数下液相的最大流速

    Table  2.   Maximum flow rate of the liquid phase at different grid numbers

    网格数最大流速/(m·s–1)
    10360.00637
    26180.00645
    64980.00647
    144480.00649
    下载: 导出CSV
  • [1] YOU M, ZHANG X X, LI W, et al. Effects of MicroPCMs on the fabrication of MicroPCMs/polyurethane composite foams[J]. Thermochimica Acta, 2008, 472(1/2): 20-24
    [2] HASNAIN S M. Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques[J]. Energy Conversion and Management, 1998, 39(11): 1127-1138 doi: 10.1016/S0196-8904(98)00025-9
    [3] LANE G A, SHAMSUNDAR N. Solar heat storage: latent heat materials, Vol. I: background and scientific principles[J]. Journal of Solar Energy Engineering, 1983, 105(4): 467
    [4] SÁNCHEZ P S, EZQUERRO J M, FERNÁNDEZ J, et al. Thermocapillary effects during the melting of phase-change materials in microgravity: steady and oscillatory flow regimes[J]. Journal of Fluid Mechanics, 2021, 908: A20 doi: 10.1017/jfm.2020.852
    [5] 李杰, 杨志刚, 毛科, 等. 微重力下单晶硅生长中热毛细对流的控制研究[J]. 重庆大学学报(自然科学版), 2002, 25(3): 97-100

    LI Jie, YANG Zhigang, MAO Ke, et al. Study on the reduction of thermocapillary convection of the single-crystal growth of silicon under microgravity[J]. Journal of Chongqing University (Natural Science Edition), 2002, 25(3): 97-100
    [6] MADRUGA S, MENDOZA C. Enhancement of heat transfer rate on phase change materials with thermocapillary flows[J]. The European Physical Journal Special Topics, 2017, 226(6): 1169-1176 doi: 10.1140/epjst/e2016-60207-7
    [7] MADRUGA S, MENDOZA C. Heat transfer performance and melting dynamic of a phase change material subjected to thermocapillary effects[J]. International Journal of Heat and Mass Transfer, 2017, 109: 501-510 doi: 10.1016/j.ijheatmasstransfer.2017.02.025
    [8] EZQUERRO J M, BELLO A, SÁNCHEZ P S, et al. The thermocapillary effects in phase change materials in microgravity experiment: design, preparation and execution of a parabolic flight experiment[J]. Acta Astronautica, 2019, 162: 185-196 doi: 10.1016/j.actaastro.2019.06.004
    [9] EZQUERRO J M, SÁNCHEZ P S, BELLO A, et al. Experimental evidence of thermocapillarity in phase change materials in microgravity: measuring the effect of Marangoni convection in solid/liquid phase transitions[J]. International Communications in Heat and Mass Transfer, 2020, 113: 104529 doi: 10.1016/j.icheatmasstransfer.2020.104529
    [10] DUAN Li, WANG Jia, KANG Qi. Research on Space and Ground Experiments of Liquid Bridge Thermocapillary Convection [C]//Summary of Papers at the 9th National Conference on Fluid Mechanics Nanjing: Fluid Mechanics Professional Committee of the Chinese Society of Mechanics, 2016 (段俐, 王佳, 康琦. 液桥热毛细对流空间和地面实验研究[C]//第九届全国流体力学学术会议论文摘要集. 南京: 中国力学学会流体力学专业委员会, 2016
    [11] 张迪, 段俐, 康琦. 实践十号卫星项目——热毛细对流振荡特征的地面研究[J]. 力学与实践, 2016, 38(1): 43-48 doi: 10.6052/1000-0879-15-315

    ZHANG Di, DUAN Li, KANG Qi. SJ-10 satellite project—ground research of oscillations characteristics of thermocapillary convection[J]. Mechanics in Engineering, 2016, 38(1): 43-48 doi: 10.6052/1000-0879-15-315
    [12] SÁNCHEZ P S, EZQUERRO J M, FERNÁNDEZ J, et al. Thermocapillary effects during the melting of phase change materials in microgravity: heat transport enhancement[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120478 doi: 10.1016/j.ijheatmasstransfer.2020.120478
    [13] SLOBOZHANIN L A, PERALES J M. Stability of liquid bridges between equal disks in an axial gravity field[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(6): 1305-1314 doi: 10.1063/1.858567
    [14] SALGADO SÁNCHEZ P, EZQUERRO J M, PORTER J, et al. Effect of thermocapillary convection on the melting of phase change materials in microgravity: experiments and simulations[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119717 doi: 10.1016/j.ijheatmasstransfer.2020.119717
    [15] CHERNATINSKY V I, BIRIKH R V, BRISKMAN V A, et al. Thermocapillary flows in long liquid bridges under microgravity[J]. Advances in Space Research, 2002, 29(4): 619-624 doi: 10.1016/S0273-1177(01)00652-4
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  433
  • HTML全文浏览量:  106
  • PDF下载量:  35
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-09-25
  • 录用日期:  2024-05-13
  • 修回日期:  2023-11-26
  • 网络出版日期:  2024-01-02

目录

    /

    返回文章
    返回