留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ICON/MIGHTI与TIMED/SABER探测温度数据的对比

牟宵 闫召爱 程旋 陈志芳 杨钧烽 胡雄 潘蔚琳

牟宵, 闫召爱, 程旋, 陈志芳, 杨钧烽, 胡雄, 潘蔚琳. ICON/MIGHTI与TIMED/SABER探测温度数据的对比[J]. 空间科学学报, 2024, 44(5): 794-805. doi: 10.11728/cjss2024.05.2023-0094
引用本文: 牟宵, 闫召爱, 程旋, 陈志芳, 杨钧烽, 胡雄, 潘蔚琳. ICON/MIGHTI与TIMED/SABER探测温度数据的对比[J]. 空间科学学报, 2024, 44(5): 794-805. doi: 10.11728/cjss2024.05.2023-0094
MU Xiao, YAN Zhaoai, CHENG Xuan, CHEN Zhifang, YANG Junfeng, HU Xiong, PAN Weilin. Comparative between Temperature Data Detected by ICON/MIGHTI and TIMED/SABER (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 794-805 doi: 10.11728/cjss2024.05.2023-0094
Citation: MU Xiao, YAN Zhaoai, CHENG Xuan, CHEN Zhifang, YANG Junfeng, HU Xiong, PAN Weilin. Comparative between Temperature Data Detected by ICON/MIGHTI and TIMED/SABER (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 794-805 doi: 10.11728/cjss2024.05.2023-0094

ICON/MIGHTI与TIMED/SABER探测温度数据的对比

doi: 10.11728/cjss2024.05.2023-0094 cstr: 32142.14.cjss2024.05.2023-0094
基金项目: 国家自然科学基金项目(12241101, 42174192, 11872128)和中国科学院国家空间科学中心“攀登计划”项目共同资助
详细信息
    作者简介:
    • 牟宵 女, 1997年2月出生于四川省成都市, 现为中国科学院国家空间科学中心学生, 主要研究方向为临近空间飞行环境等. E-mail: muxiao0221@163.com
    通讯作者:
    • 闫召爱 男, 1981年10月出生于山东省巨野县, 现为中国科学院国家空间科学中心正高级工程师, 博士生导师, 主要研究方向为临近空间大气探测技术与应用研究. E-mail: yanza@nssc.ac.cn
  • 中图分类号: P352

Comparative between Temperature Data Detected by ICON/MIGHTI and TIMED/SABER

  • 摘要: ICON卫星为临近空间环境特性研究、建模和预报提供了新数据. 通过对ICON/MIGHTI与TIMED/SABER在90~105 km高度探测温度数据的比较, 计算两者的年平均温度偏差和均方根误差, 同时分析月平均温度偏差在不同月份中随高度和纬度的分布情况, 为MIGHTI和SABER温度探测数据在临近空间大气建模和预报应用提供参考依据. 结果表明, MIGHTI和SABER的温度垂直廓线变化趋势基本吻合, 数值上有所差异. 在12°S-42°N范围内, MIGHTI探测温度与SABER相比, 在90~93 km时偏低, 偏差最大值约2.5 K, 在93~105 km偏高, 偏差的绝对值最大约10 K. 在不同季节, 白天的温度偏差通常高于夜晚. SABER和MIGHTI的月平均温度偏差随季节和纬度的变化显著, 夏季时的月平均温度偏差最大, 且温度的均方根误差最大.

     

  • 图  1  ICON/MIGHTI与TIMED/SABER温度匹配数据分布

    Figure  1.  Distribution of matched data for ICON/MIGHTI and TIMED/SABER temperatures

    图  2  MIGHTI与SABER探测温度个例比较结果及温度偏差. MIGHTI (4.46°N, 25.44°W, 16:06 LT), SABER (4.57°N, 26.13°W, 15:42 LT), MIGHTI (39.95°N, 167.13°E, 02:12 LT), SABER (39.74°N, 166.87°E, 02:48 LT)

    Figure  2.  Comparison of individual profiles of temperatures detected and temperature deviation by ICON/MIGHTI and TIMED/SABER. MIGHTI (4.46°N, 25.44°W, 16:06 LT), SABER (4.57°N, 26.13°W, 15:42 LT), MIGHTI (39.95°N, 167.13°E, 02:12 LT), SABER (39.74°N, 166.87°E, 02:48 LT)

    图  3  MIGHTI与SABER探测温度偏差(a)和均方根误差(b)随季节变化的统计结果

    Figure  3.  Statistical results of deviation (a) and root mean square error (b) of MIGHTI and SABER detection temperatures with seasonal variations

    图  4  MIGHTI与SABER探测温度在不同季节的偏差随纬度变化的统计结果

    Figure  4.  Statistical results of the deviation of MIGHTI and SABER probe temperatures with latitude in different seasons

    图  5  MIGHTI与SABER探测温度在不同季节的均方根误差随纬度变化的统计结果

    Figure  5.  Statistical results on the variation of root mean square error with latitude for MIGHTI and SABER probe temperatures in different seasons

    图  6  MIGHTI与SABER温度数据在不同季节的平均温度偏差随高度变化的统计结果

    Figure  6.  Statistical results of mean temperature deviation with altitude for MIGHTI and SABER temperature data in different seasons

    图  7  MIGHTI与SABER温度数据在不同季节的均方根误差随高度变化的统计结果

    Figure  7.  Statistical results of root mean square error variation with altitude for MIGHTI and SABER temperature data in different seasons

    图  8  MIGHTI与SABER匹配数据的温度标准差

    Figure  8.  Standard deviation of temperature of MIGHTI and SABER

    表  1  MIGHTI/ICON和TIMED/SABER温度探测数据匹配情况

    Table  1.   Numbers of matching data of ICON/MIGHTI and TIMED/SABER

    纬度分布 1月 4月 7月 10月
    10°S-0° 267 193 214 334
    0°-10°N 93 182 41 223
    10°N-20°N 64 176 223 166
    20°N-30°N 140 231 80 136
    30°N-40°N 195 367 231 330
    总数 759 1149 789 1075
    下载: 导出CSV
  • [1] 肖存英, 胡雄, 王博, 等. 临近空间大气扰动变化特性的定量研究[J]. 地球物理学报, 2016, 59(4): 1211-1221

    XIAO Cunying, HU Xiong, WANG Bo, et al. Quantitative study of atmospheric disturbance variation characteristics in the near space[J]. Chinese Journal of Geophysics, 2016, 59(4): 1211-1221
    [2] SHE C Y, LIU A Z, YUAN T, et al. MLT science enabled by atmospheric lidars[M]//WANG W B, ZHANG Y L, PAXTON L J. Upper Atmosphere Dynamics and Energetics. Hoboken: Wiley-American Geophysical Union, 2021: 395-450
    [3] 闫召爱, 胡雄, 郭文杰, 等. 临近空间多普勒激光雷达技术及其应用(特邀)[J]. 红外与激光工程, 2021, 50(3): 20210100 doi: 10.3788/IRLA20210100

    YAN Zhaoai, HU Xiong, GUO Wenjie, et al. Near space Doppler lidar techniques and applications (Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210100 doi: 10.3788/IRLA20210100
    [4] SOX L, WICKWAR V B, YUAN T, et al. Simultaneous rayleigh‐scatter and sodium resonance lidar temperature comparisons in the mesosphere-lower thermosphere[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(18): 10688-10706
    [5] DABAS A, DENNEULIN M L, FLAMANT P, et al. Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects[J]. Tellus A: Dynamic Meteorology and Oceanography, 2008, 60(2): 206-215 doi: 10.1111/j.1600-0870.2007.00284.x
    [6] 王博, 胡雄, 肖存英, 等. 子午工程首次火箭探空数据准单色惯性重力波特性分析[J]. 空间科学学报, 2017, 37(5): 547-553 doi: 10.11728/cjss2017.05.547

    WANG Bo, HU Xiong, XIAO Cunying, et al. Characteristics of quasi-monochromatic inertia gravity waves revealed by first meteorological rocket data of the meridian space weather monitoring project[J]. Chinese Journal of Space Science, 2017, 37(5): 547-553 doi: 10.11728/cjss2017.05.547
    [7] WRASSE C M, FECHINE J, TAKAHASHI H, et al. Temperature comparison between CHAMP radio occultation and TIMED/SABER measurements in the lower stratosphere[J]. Advances in Space Research, 2008, 41(9): 1423-1428 doi: 10.1016/j.asr.2007.06.073
    [8] 宫晓艳, 胡雄, 吴小成, 等. COSMIC大气掩星与SABER/TIMED探测温度数据比较[J]. 地球物理学报, 2013, 56(7): 2152-2162

    GONG Xiaoyan, HU Xiong, WU Xiaocheng, et al. Comparison of temperature measurements between COSMIC atmospheric radio occultation and SABER/TIMED[J]. Chinese Journal of Geophysics, 2013, 56(7): 2152-2162
    [9] SCHWARTZ M J, LAMBERT A, MANNEY G L, et al. Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D15): D15S11
    [10] 谢衍新, 肖存英, 胡雄, 等. TIMED/SABER与AURA/MLS临近空间探测温度数据比较[J]. 空间科学学报, 2018, 38(3): 361-367 doi: 10.11728/cjss2018.03.361

    XIE Yanxin, XIAO Cunying, HU Xiong, et al. Comparison between temperature data of TIMED/SABER and AURA/MLS[J]. Chinese Journal of Space Science, 2018, 38(3): 361-367 doi: 10.11728/cjss2018.03.361
    [11] PARK J, EVANS J S, EASTES R W, et al. Exospheric temperature measured by NASA‐GOLD under low solar activity: comparison with other data sets[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): e2021JA030041 doi: 10.1029/2021JA030041
    [12] 胡向瑞, 李发泉, 王后茂, 等. MIGHTI/ICON卫星的中高层大气温度反演与验证[J]. 光学学报, 2023, 43(12): 1201006 doi: 10.3788/AOS221914

    HU Xiangrui, LI Faquan, WANG Houmao, et al. Retrieval and verification of mid-upper atmospheric temperature from MIGHTI/ICON satellite[J]. Acta Optica Sinica, 2023, 43(12): 1201006 doi: 10.3788/AOS221914
    [13] STEVENS M H, ENGLERT C R, HARLANDER J M, et al. Temperatures in the upper mesosphere and lower thermosphere from O2 atmospheric band emission observed by ICON/MIGHTI[J]. Space Science Reviews, 2022, 218(8): 67 doi: 10.1007/s11214-022-00935-x
    [14] ENGLERT C R, HARLANDER J M, MARR K D, et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) on-orbit wind observations: data analysis and instrument performance[J]. Space Science Reviews, 2023, 219(3): 27 doi: 10.1007/s11214-023-00971-1
    [15] HARDING B J, CHAU J L, HE M S, et al. Validation of ICON-MIGHTI thermospheric wind observations: 2. Green-line comparisons to specular meteor radars[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028947 doi: 10.1029/2020JA028947
    [16] IMMEL T J, ENGLAND S L, MENDE S B, et al. The ionospheric connection explorer mission: mission goals and design[J]. Space Science Reviews, 2018, 214(1): 13 doi: 10.1007/s11214-017-0449-2
    [17] ENGLERT C R, HARLANDER J M, BROWN C M, et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): instrument design and calibration[J]. Space Science Reviews, 2017, 212(1/2): 553-584
    [18] STEVENS M H, ENGLERT C R, HARLANDER J M, et al. Retrieval of lower thermospheric temperatures from O2 a band emission: the MIGHTI experiment on ICON[J]. Space Science Reviews, 2018, 214(1): 4 doi: 10.1007/s11214-017-0434-9
    [19] REZAC L, KUTEPOV A, RUSSELL J M, et al. Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 130-131: 23-42 doi: 10.1016/j.jastp.2015.05.004
    [20] BIZUNEH C L, JAYA PRAKASH RAJU U, NIGUSSIE M, et al. Long-term temperature and ozone response to natural drivers in the mesospheric region using 16 years (2005–2020) of TIMED/SABER observation data at 5°–15°N[J]. Advances in Space Research, 2022, 70(7): 2095-2111 doi: 10.1016/j.asr.2022.06.051
    [21] ZHAO X R, SHENG Z, SHI H Q, et al. Long-term trends and solar responses of the mesopause temperatures observed by SABER during the 2002–2019 period[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(11): e2020JD032418 doi: 10.1029/2020JD032418
    [22] FAN Z Q, ZHOU Y F, GU C L, et al. Temperature fusion of TIMED/SABER data and COSMIC data in stratosphere[J]. Radio Science, 2023, 58(2): e2022RS007560 doi: 10.1029/2022RS007560
    [23] EMMERT J T, DROB D P, PICONE J M, et al. NRLMSIS 2.0: a whole‐atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 2021, 8(3): e2020EA001321 doi: 10.1029/2020EA001321
    [24] DAS U. Spatial variability in long-term temperature trends in the middle atmosphere from SABER/TIMED observations[J]. Advances in Space Research, 2021, 68(7): 2890-2903 doi: 10.1016/j.asr.2021.05.014
    [25] LÓPEZ-GONZÁLEZ M J, GARCÍA-COMAS M, RODRÍGUEZ E, et al. Ground-based mesospheric temperatures at mid-latitude derived from O2 and OH airglow SATI data: comparison with SABER measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(17/18): 2379-2390
    [26] REZAC L, JIAN Y, YUE J, et al. Validation of the global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(23): 12067-12081
    [27] DAWKINS E C M, FEOFILOV A, REZAC L, et al. Validation of SABER v2.0 operational temperature data with ground‐based lidars in the mesosphere‐lower thermosphere region (75–105 km)[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9916-9934 doi: 10.1029/2018JD028742
    [28] 程旋, 肖存英, 胡雄, 等. 基于TIMED/SABER卫星温度数据对大气经验模型的评估[J]. 中国科学: 物理学 力学 天文学, 2018, 48 (10): 104701

    CHENG Xuan, XIAO Cunying, HU Xiong, et al. Evaluation of atmospheric empirical model based on TIMED/SABER satellite temperature data[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48 (10): 104701
    [29] YUAN T, STEVENS M H, ENGLERT C R, et al. Temperature tides across the mid-latitude summer turbopause measured by a sodium lidar and MIGHTI/ICON[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(16): e2021JD035321 doi: 10.1029/2021JD035321
    [30] GARCIA R R, LÓPEZ-PUERTAS M, FUNKE B, et al. On the distribution of CO2 and CO in the mesosphere and lower thermosphere[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(9): 5700-5718 doi: 10.1002/2013JD021208
    [31] FOMICHEV V I, BLANCHET J P, TURNER D S. Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D10): 11505-11528 doi: 10.1029/98JD00799
    [32] OFFERMANN D, GUSEV O, DONNER M, et al. Relative intensities of middle atmosphere waves[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D6): D06110
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  147
  • PDF下载量:  70
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-09-01
  • 修回日期:  2023-11-02
  • 网络出版日期:  2024-01-23

目录

    /

    返回文章
    返回