留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地球磁场微波遥感探测方法研究进展

王可昕 王振占

王可昕, 王振占. 地球磁场微波遥感探测方法研究进展[J]. 空间科学学报, 2024, 44(5): 818-831. doi: 10.11728/cjss2024.05.2023-0117
引用本文: 王可昕, 王振占. 地球磁场微波遥感探测方法研究进展[J]. 空间科学学报, 2024, 44(5): 818-831. doi: 10.11728/cjss2024.05.2023-0117
WANG Kexin, WANG Zhenzhan. Advances in the Study of the Methods for Detecting the Earth Magnetic Field from Passive Microwave Remote Sensing (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 818-831 doi: 10.11728/cjss2024.05.2023-0117
Citation: WANG Kexin, WANG Zhenzhan. Advances in the Study of the Methods for Detecting the Earth Magnetic Field from Passive Microwave Remote Sensing (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 818-831 doi: 10.11728/cjss2024.05.2023-0117

地球磁场微波遥感探测方法研究进展

doi: 10.11728/cjss2024.05.2023-0117 cstr: 32142.14.cjss2024.05.2023-0117
基金项目: 国家自然科学基金项目资助(42375141)
详细信息
    作者简介:
    • 王可昕 女, 1996年3月出生于河北省石家庄市, 现为中国科学院国家空间科学中心博士研究生, 主要研究方向为微波遥感信息处理、定标及应用研究等. E-mail: wangkexin18@mails.ucas.ac.cn
    通讯作者:
    • 王振占 男, 1969年生, 现为中国科学院国家空间科学中心研究员, 博士生导师, 主要研究方向为微波遥感定标、定量反演与应用技术. E-mail: wangzhenzhan@mirslab.cn
  • 中图分类号: P353.1

Advances in the Study of the Methods for Detecting the Earth Magnetic Field from Passive Microwave Remote Sensing

  • 摘要: 地磁场是地球的重要物理场之一, 地磁学在地球与空间物理以及地质等领域具有极为重要的作用. 强便利性、低成本、广空间范围的磁场测量方法与高精度、多维度的地磁测量数据的获取, 是地磁学等领域科学与应用研究得以深入的重要依据. 为解决基于高精度磁强计的原位磁场测量方法在效率和探测范围等方面的局限, 遥感探测已经逐渐开始成为一个新的磁场探测研究领域. 本文基于微波辐射计遥感手段的地磁场遥感探测方法, 综合分析了地磁场微波遥感技术方法的基本原理、研究进展与应用现状, 并在此基础上讨论了其在探测能力等方面的需求、技术难点及未来的发展趋势, 进而对未来磁场遥感探测研究, 例如行星磁场遥感探测等提出了新的展望.

     

  • 图  1  不同地磁场探测方法可探测的磁场海拔高度范围

    Figure  1.  Detected range of magnetic field elevation by different geomagnetic field detection methods

    图  2  外加磁场时由于塞曼效应产生谱线分裂

    Figure  2.  Line splitting occurs due to Zeeman effect when magnetic field is applied

    图  3  (a) Aura/MLS垂直极化接收器于2005年1月1日在82~92 km切高处118 GHz附近的氧气频谱, (b)参考IGRF-12地磁模型在相同轨迹得到的88 km高度处的地磁场强度

    Figure  3.  (a) O2 118 GHz spectra taken by the Aura MLS vertically polarized receiver at 82~92 km tangent height on 1 January 2005. (b) The background geomagnetic field strengths at the altitude of 88 km obtained from the IGRF-12 model following the same observational track

    图  4  (a) MEM的四束极化测量, (b) 6U立方星的基本配置, (c) EZIE多卫星系统观测

    Figure  4.  (a) Four-beam polarization measurements from the MEM receiver, (b) configuration of 6U CubeSat, (c) EZIE multi-satellite system observation

    图  5  MEM接收机系统设计

    Figure  5.  System design of the MEM receiver

    图  6  典型跃迁频率氧气分子谱线分裂的相对强度关系

    Figure  6.  Typical transition frequency relative intensity relationship of oxygen molecular line splitting

    图  7  61.15 GHz不同磁场强度下的谱线分裂

    Figure  7.  Line splitting at 61.15 GHz with different magnetic field intensities

    表  1  地磁场探测方法的主要优缺点

    Table  1.   Main advantages and disadvantages of geomagnetic field detection methods

    探测方法 具体方法 探测高度 优势 局限性
    原位探测  地磁监测站  地表及低空(通常为几百米至数千米)  精度高, 可达10–1 nT量级  受探测器所处位置限制, 探测数据的空间范围有限, 数据整合处理困难
     磁测卫星  卫星轨道高度附近  探测精度、探测效率高  难以补充卫星与航空磁测之间中高层大气区域的磁场数据空白
    遥感探测  钠共振荧光雷达
    Radar REMPI技术
     90 km左右
    依赖大气Xe存在区域
     精度可达 1 nT左右[15], 遥感手段不受探测器位置限制  系统复杂、应用性不高; 无法实现快速的全球连续观测
    下载: 导出CSV

    表  2  中高层氧分子探测相关卫星任务及探测仪比较

    Table  2.   Comparison of satellite missions and detector for middle and upper level oxygen molecule detection

    卫星任务 国家 (计划)发射
    时间
    探测仪器 氧分子探测
    频段/GHz
    观测几何 反演精度
    估计/nT
    磁场相关应用方向
    Aura 2004 Microwave Limb Sounder, MLS 118 临边  极区电激流影响的磁场
    扰动
    SIMILES-2 SIMILES-2 771~777 临边 30  地磁场反演、近电离层高度磁场扰动测量
    EZIE 2025 Microwave Electrojet Magnetogram, MEM 118 天底 45  中高层大气高度的磁场
    扰动
    下载: 导出CSV

    表  3  氧分子典型跃迁频率的谱线参数

    Table  3.   Spectral line parameters of typical transition frequencies of oxygen molecules

    跃迁量子数 跃迁频率/GHz 谱线强度/
    (J–1·cm–2·s–1·sr–1)
    塞曼分裂系数/
    (Hz·nT–1)
    地磁场范围内的最大
    分裂宽度/MHz
    谱线塞曼分裂
    总条数
    J, N = 9, 9←10, 9 61.15 1.35×10–25 25.22 0.63~1.64 57
    J, N =1, 1←0, 1 118.75 1.00×10–25 14.01 0.35~0.91 3
    J, N =2, 3←2, 1 424.76 2.43×10–25 46.70 1.17~3.04 12
    J, N =3, 3←2, 1 487.25 1.04×10–25 25.69 0.64~1.67 15
    J, N =4, 5←4, 3 773.84 3.96×10–25 50.44 1.26~3.28 24
    下载: 导出CSV
  • [1] 徐文耀. 地球电磁现象物理学[M]. 合肥: 中国科学技术大学出版社, 2009

    XU Wenyao. Physics of Electromagnetic Phenomena of the Earth[M]. Hefei: University of Science and Technology of China Press, 2009
    [2] HULOT G, SABAKA T J, OLSEN N, et al. The present and future geomagnetic field[J]. Treatise on Geophysics (Second Edition), 2015, 5: 33-78
    [3] 姜乙. 联合全球卫星模型和航磁数据的中国大陆地区岩石圈磁场建模研究[D]. 南京: 南京信息工程大学, 2020

    JIANG Yi. Research of Regional Lithospheric Field Modelling in Continent China Combining Global Satellite Models and Aeromagnetic Data[D]. Nanjing: Nanjing University of Information Science & Technology, 2020
    [4] 冯彦, 孙涵, 蒋勇, 等. 20世纪中国地区主磁场变化研究[J]. 地震学报, 2013, 35(6): 865-875 doi: 10.3969/j.issn.0253-3782.2013.06.01

    FENG Yan, SUN Han, JIANG Yong, et al. Variation of the main magnetic field in Chinese mainland during 20th century[J]. Acta Seismologica Sinica, 2013, 35(6): 865-875 doi: 10.3969/j.issn.0253-3782.2013.06.01
    [5] 郭鑫. 基于磁阻效应的地磁场探测研究[D]. 成都: 电子科技大学, 2015

    GUO Xin. Research on the Detection of Magnetic Field Based on Magnetoresistive[D]. Chengdu: University of Electronic Science and Technology of China, 2015
    [6] 张晓旭. 基于钠原子共振荧光的地磁测量系统研究[D]. 北京: 北京科技大学, 2020

    ZHANG Xiaoxu. Research on A Geomagnetic Measurement System Based on the Resonance Fluorescence of Sodium Atoms[D]. Beijing: University of Science and Technology Beijing, 2020
    [7] 孟庆奎, 舒晴, 徐光晶, 等. 国际地磁台网发展现状与展望[J]. 地震地磁观测与研究, 2019, 40(5): 79-84 doi: 10.3969/j.issn.1003-3246.2019.05.011

    MENG Qingkui, SHU Qing, XU Guangjing, et al. Development status and prospect of international geomagnetic network[J]. Seismological and Geomagnetic Observation and Research, 2019, 40(5): 79-84 doi: 10.3969/j.issn.1003-3246.2019.05.011
    [8] 程德福, 陈军, 周志坚. 多星协同式卫星磁测技术发展综述[J]. 地球物理学进展, 2017, 32(6): 2304-2309 doi: 10.6038/pg20170603

    CHENG Defu, CHEN Jun, ZHOU Zhijian. Progress of detecting magnetic field technology in a constellation of satellites[J]. Progress in Geophysics, 2017, 32(6): 2304-2309 doi: 10.6038/pg20170603
    [9] Christensen F E, Lüuhr H, Hulot G. Swarm: A constellation to study the Earth’s magnetic field[J]. Earth, Planets and Space, 2006, 58 (4): 351-358. DOI: https://doi.org/10.1186/BF03351933
    [10] 申旭辉, 泽仁志玛, 袁仕耿, 等. 中国“张衡一号”电磁监测卫星计划进展[J]. 城市与减灾, 2021(4): 27-32 doi: 10.3969/j.issn.1671-0495.2021.04.005

    SHEN Xuhui, ZEREN Zhima, YUAN Shigeng, et al. Progress on China’s first Seismo-electromagnetic satellite[J]. City and Disaster Reduction, 2021(4): 27-32 doi: 10.3969/j.issn.1671-0495.2021.04.005
    [11] 泽仁志玛, 刘大鹏, 孙晓英, 等. 张衡一号电磁卫星在轨情况及主要的科学成果[J]. 地球与行星物理论评(中英文), 2023, 54(4): 455-465

    ZEREN Zhima, LIU Dapeng, SUN Xiaoying, et al. Current status and scientific progress of the Zhangheng-1 satellite mission[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(4): 455-465
    [12] KANE T J, HILLMAN P D, DENMAN C A, et al. Laser remote magnetometry using mesospheric sodium[J]. Journal of Geophysical Research: Space Physics, 2018, 123(8): 6171-6188 doi: 10.1029/2018JA025178
    [13] BUDKER D, ROMALIS M. Optical magnetometry[J]. Nature Physics, 2007, 3(4): 227-234 doi: 10.1038/nphys566
    [14] HIGBIE J M, ROCHESTER S M, PATTON B, et al. Magnetometry with mesospheric sodium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3522-3525 doi: 10.1073/pnas.1013641108
    [15] HAPPER W, MACDONALD G J, MAX C E, et al. Atmospheric-turbulence compensation by resonant optical backscattering from the sodium layer in the upper atmosphere[J]. Journal of the Optical Society of America A, 1994, 11(1): 263-276 doi: 10.1364/JOSAA.11.000263
    [16] BUSTOS F P, CALIA D B, BUDKER D, et al. Remote sensing of geomagnetic fields and atomic collisions in the mesosphere[J]. Nature Communications, 2018, 9(1): 3981 doi: 10.1038/s41467-018-06396-7
    [17] KAWAHARA T D, KITAHARA T, KOBAYASHI F, et al. Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69°S, 39°E), Antarctica[J]. Geophysical Research Letters, 2002, 29(15): 1709 doi: 10.1029/2002GL015244
    [18] 方欣. 钠测温测风激光雷达的研制及重力波动量通量的探测[D]. 合肥: 中国科学技术大学, 2012

    FANG Xin. Sodium Temperature and Wind Lidar Development and Gravity Wave Momentum Flux Observation[D]. Hefei: University of Science and Technology of China, 2012
    [19] HU X, YAN Z A, GUO S Y, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chinese Science Bulletin, 2011, 56(4/5): 417-423 doi: 10.1007/s11434-010-4306-x
    [20] SHE C Y, SHERMAN J, YUAN T, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind[J]. Geophysical Research Letters, 2003, 30(6): 1319 doi: 10.1029/2002GL016412
    [21] 程永强. 可重部署钠层测风测温激光雷达观测与研究[D]. 北京: 中国科学院国家空间科学中心, 2016

    CHENG Yongqiang. Research and Observation of Relocatable Sodium Wind/Temperature Lidar[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2016
    [22] DOGARIU A, MILES R B. Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization[J]. Applied optics, 2011, 50(4): 68-73 doi: 10.1364/AO.50.000A68
    [23] DOGARIU A, CHNG T L, MILES R B. Towards remote magnetic anomaly detection using radar REMPI[C]//2014 Conference on Lasers and Electro-Optics (CLEO): Science and Innovations 2014. San Jose: Optical Society of America, 2014: SM4E. 4. DOI: 10.1364/cleo_si.2014.sm4e.4
    [24] DOGARIU A, STEIN C, GLASER A, et al. Long range trace detection by radar REMPI[C]//Proceedings of SPIE 8024, Advanced Environmental, Chemical, and Biological Sensing Technologies VIII. Orlando: SPIE, 2011: 80240G. DOI: 10.1117/12.883982
    [25] GALEA C A, SHNEIDER M N, DOGARIU A, et al. Radar REMPI measurements in the presence of a magnetic field[C]//AIAA Scitech 2019 Forum. San Diego: American Institute of Aeronautics and Astronautics, 2019. DOI: 10.2514/6.2019-0195
    [26] 种洋, 常宜峰, 柴洪洲, 等. 不同卫星轨道高度对地壳磁场反演的影响研究[J]. 地球物理学报, 2021, 64(3): 796-804 doi: 10.6038/cjg2021N0349

    CHONG Yang, CHANG Yifeng, CHAI Hongzhou, et al. Analysis on the inversion influence of crustal geomagnetic field at different satellite orbital altitudes[J]. Chinese Journal of Geophysics, 2021, 64(3): 796-804 doi: 10.6038/cjg2021N0349
    [27] 常宜峰. 卫星磁测数据处理与地磁场模型反演理论与方法研究[D]. 郑州: 解放军信息工程大学, 2015

    CHANG Yifeng. Research on Satellite Geomagnetic Data Process and Geomagnetic Model Recovery Theory and Method[D]. Zhengzhou: PLA Information Engineering University, 2015
    [28] 徐冰. 国外磁力探测卫星的发展[J]. 国际太空, 2015(9): 16-21

    XU Bing. Development of foreigh geomagnetic exploration satellites[J]. Space International, 2015(9): 16-21
    [29] PURUCKER M. Advances in remote sensing of magnetic fields[J]. Eos, Transactions American Geophysical Union, 2014, 95(38): 343
    [30] ZEEMAN P. XXXII. On the influence of magnetism on the nature of the light emitted by a substance[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1897, 43(262): 226-239 doi: 10.1080/14786449708620985
    [31] HARTMANN G K, DEGENHARDT W, RICHARDS M L, et al. Zeeman splitting of the 61 Gigahertz oxygen (O2) line in the mesosphere[J]. Geophysical Research Letters, 1996, 23(17): 2329-2332 doi: 10.1029/96GL01043
    [32] HAN Y, WENG F, LIU Q, et al. A fast radiative transfer model for SSMIS upper atmosphere sounding channels[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11121 doi: 10.1029/2006JD008208
    [33] ERIKSSON P, BUEHLER S A, DAVIS C P, et al. ARTS, the atmospheric radiative transfer simulator, version 2[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(10): 1551-1558 doi: 10.1016/j.jqsrt.2011.03.001
    [34] LARSSON R, BUEHLER S A, ERIKSSON P, et al. A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133: 445-453 doi: 10.1016/j.jqsrt.2013.09.006
    [35] NAVAS-GUZMÁN F, KÄMPFER N, MURK A, et al. Zeeman effect in atmospheric O2 measured by ground-based microwave radiometry[J]. Atmospheric Measurement Techniques, 2015, 8(4): 1863-1874 doi: 10.5194/amt-8-1863-2015
    [36] YEE J H, GJERLOEV J, WU D, et al. First application of the Zeeman technique to remotely measure auroral electrojet intensity from space[J]. Geophysical Research Letters, 2017, 44(20): 10134-10139 doi: 10.1002/2017GL074909
    [37] OCHIAI S, BARON P, NISHIBORI T, et al. SMILES-2 mission for temperature, wind, and composition in the whole atmosphere[J]. SOLA, 2017, 13A (Special_Edition): 13-18. DOI: 10.2151/sola.13A-003
    [38] BARON P, OCHIAI S, DUPUY E, et al. Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)[J]. Atmospheric Measurement Techniques, 2020, 13(1): 219-237 doi: 10.5194/amt-13-219-2020
    [39] LAUNDAL K M, YEE J H, MERKIN V G, et al. Electrojet estimates from mesospheric magnetic field measurements[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): e2020JA028644 doi: 10.1029/2020JA028644
    [40] YEE J H, GJERLOEV J, WU D. Remote sensing of magnetic fields induced by electrojets from space: measurement techniques and sensor design[M]//WANG W B, ZHANG Y L, PAXTON L J. Upper Atmosphere Dynamics and Energetics. Hoboken: American Geophysical Union, 2021: 451-468. DOI: 10.1002/9781119815631.ch21
    [41] KASAI Y, SAGAWA H, KURODA T, et al. Overview of the Martian atmospheric submillimetre sounder FIRE[J]. Planetary and Space Science, 2012, 63-64: 62-82 doi: 10.1016/j.pss.2011.10.013
    [42] LARSSON R, RAMSTAD R, MENDROK J, et al. A method for remote sensing of weak planetary magnetic fields: simulated application to Mars[J]. Geophysical Research Letters, 2013, 40(19): 5014-5018 doi: 10.1002/grl.50964
    [43] LARSSON R, MILZ M, ERIKSSON P, et al. Martian magnetism with orbiting sub-millimeter sensor: simulated retrieval system[J]. Geoscientific Instrumentation, Methods and Data Systems, 2017, 6(1): 27-37 doi: 10.5194/gi-6-27-2017
    [44] LARSSON R, KASAI Y, KURODA T, et al. Mars submillimeter sensor on microsatellite: sensor feasibility study[J]. Geoscientific Instrumentation, Methods and Data Systems, 2018, 7(4): 331-341 doi: 10.5194/gi-7-331-2018
    [45] YAMADA T, BARON P, NEARY L, et al. Observation capability of a ground-based terahertz radiometer for vertical profiles of oxygen and water abundances in Martian atmosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4106311 doi: 10.1109/TGRS.2022.3152271
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  694
  • HTML全文浏览量:  168
  • PDF下载量:  43
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2024-01-16
  • 网络出版日期:  2024-05-11

目录

    /

    返回文章
    返回