留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度聚类算法在SuperDARN雷达目标回波分类中的应用

孔星 刘二小 陈烽聚 乔磊

孔星, 刘二小, 陈烽聚, 乔磊. 深度聚类算法在SuperDARN雷达目标回波分类中的应用[J]. 空间科学学报, 2024, 44(5): 806-817. doi: 10.11728/cjss2024.05.2023-0136
引用本文: 孔星, 刘二小, 陈烽聚, 乔磊. 深度聚类算法在SuperDARN雷达目标回波分类中的应用[J]. 空间科学学报, 2024, 44(5): 806-817. doi: 10.11728/cjss2024.05.2023-0136
KONG Xing, LIU Erxiao, CHEN Fengju, QIAO Lei. Application of Deep Clustering Algorithm in Target Echo Classification of SuperDARN Radar (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 806-817 doi: 10.11728/cjss2024.05.2023-0136
Citation: KONG Xing, LIU Erxiao, CHEN Fengju, QIAO Lei. Application of Deep Clustering Algorithm in Target Echo Classification of SuperDARN Radar (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 806-817 doi: 10.11728/cjss2024.05.2023-0136

深度聚类算法在SuperDARN雷达目标回波分类中的应用

doi: 10.11728/cjss2024.05.2023-0136 cstr: 32142.14.cjss2024.05.2023-0136
基金项目: 国家重点研发计划项目(2018YFC1407304, 2018YFC1407300, 2022YFC2807205)和国家自然科学基金项目(41974185)共同资助
详细信息
    作者简介:
    • 孔星 女, 1998年出生于山东省济宁市, 现为杭州电子科技大学研究生, 主要研究方向是SuperDARN雷达目标回波数据处理. E-mail: kongxing@hdu.edu.cn
    通讯作者:
    • 刘二小 男, 1984年出生于内蒙古包头, 现为杭州电子科技大学通信工程学院副教授, 主要研究方向是高频雷达数据处理、极区空间环境特性分析及深度学习应用等. E-mail: liuerxiao@hdu.edu.cn
  • 中图分类号: P352

Application of Deep Clustering Algorithm in Target Echo Classification of SuperDARN Radar

  • 摘要: SuperDARN雷达目标回波中通常包含多种类型散射的回波, 例如电离层不规则体回波、地面/海面散射回波、极区中层夏季回波以及流星余迹回波等. 利用SuperDARN采集的电离层回波制作的电离层对流图对于空间天气研究具有重要意义. SuperDARN接收到的电离层回波通常会与地面海面的散射回波混淆, 从而造成绘制的电离层对流图不准确, 因此对于SuperDARN目标回波进行聚类分析具有重要意义. 本文首次将基于自动编码器网络的图嵌入深度聚类算法应用于SuperDARN目标回波数据, 有效地对SuperDARN回波数据进行了分类. 此外, 还将该模型与传统算法和机器学习聚类算法进行了比较. 该模型在样本数据中的应用表明, 深度聚类算法能够捕捉到回波数据的深层结构特征, 提高了回波聚类的准确性.

     

  • 图  1  构建图结构

    Figure  1.  Graph structure

    图  2  自动编码器网络结构

    Figure  2.  Autoencoder network structure

    图  3  传统方法分类昭和站雷达数据 (a) 与三种聚类算法聚类昭和站雷达数据 (b) 结果可视化

    Figure  3.  Visualization of data results from SYE Station classified by traditional methods (a), and three clustering algorithms (b)

    图  4  (a)图3(a)红色方框内数据特征分布直方图, (b)图3(a)绿色框内数据特征分布直方图, (c)图3(a)橙色框内的数据特征分布直方图

    Figure  4.  Histogram of feature distribution for data in red box (a), data in green box (b) and data in orange box (c) from Fig. 3 (a)

    图  5  传统方法分类中山站雷达数据 (a) 与三种聚类算法聚类中山站雷达数据 (b) 结果可视化

    Figure  5.  Visualization of data results from ZHO Station classified by traditional methods (a), and three clustering algorithms (b)

    图  6  (a)图5(a)红色方框内数据特征分布直方图, (b)图5(a)绿色框内的数据特征分布直方图, (c)图5(a)橙色框内的数据特征分布直方图

    Figure  6.  Histogram of feature distribution for data in red box (a), data in green box (b) and data in orange box (c) from Fig.5(a)

    图  7  K取2~5时的$ {R}_{\mathrm{S}\mathrm{I}} $值变化

    Figure  7.  Changes of $ {R}_{\mathrm{S}\mathrm{I}} $ value as K varies from 2 to 5

    图  8  (a)传统分类模型有贡献特征的SHAP, (b) AE-K均值模型有贡献特征的SHAP

    Figure  8.  Traditional method (a) and AE-K-means model (b) contribute to SHAP diagram interpretation of features

    表  1  数据集

    Table  1.   Data-Set

    Radar Day Features
    SYE (Data-Set1) 2014-03-03  一天的时间(s), Range-Gate, 回波强度, 多普勒速度, 多普勒谱宽, 雷达自动处理 2π 模糊度
    (使相位处于–π~π之间), 仰角, 速度误差, 谱宽误差, 初始功率p0 , 频率
    ZHO (Data-Set2) 2014-12-04  一天的时间(s), Range-Gate, 回波强度, 多普勒速度, 多普勒谱宽, 雷达自动处理 2π 模糊度
    (使相位处于–π~π之间), 仰角, 速度误差, 谱宽误差, 初始功率p0 , 频率
    下载: 导出CSV

    表  2  三种聚类算法得到的RSI值和RCH

    Table  2.   RSI and RCH values obtained by three clustering algorithms

    Score $ {R}_{\mathrm{S}\mathrm{I}} $ $ {R}_{\mathrm{C}\mathrm{H}} $
    K-means 44.70 7449.96
    SPEC 39.43 6376.27
    AE-K-means 60.94 24421.17
    下载: 导出CSV

    表  3  不同算法设置不同K值聚类数据所得的RSI

    Table  3.   Different algorithms set the RSI values obtained by clustering data with different K values

    Class 2 3 4 5
    K-means 44.70 43.65 45.26 37.92
    SPEC 39.43 39.71 30.59 30.79
    AE-K-means 60.94 52.70 55.97 54.37
    下载: 导出CSV

    表  4  AE-K-means算法的稳定性

    Table  4.   Stability of AE-K-means algorithm

    频次 样本数量
    1 3543, 6633
    2 3798, 6378
    3 3774, 6402
    4 3531, 6645
    5 3951, 6225
    下载: 导出CSV
  • [1] KUSTOV A V, PAPITASHVILI V O, SOFKO G J, et al. Dayside ionospheric plasma convection, electric fields, and field‐aligned currents derived from the SuperDARN radar observations and predicted by the IZMEM model[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A11): 24057-24067 doi: 10.1029/97JA02309
    [2] MARCUCCI M F, COCO I, MASSETTI S, et al. Echo occurrence in the southern polar ionosphere for the SuperDARN Dome C East and Dome C North radars[J]. Polar Science, 2021, 28: 100684 doi: 10.1016/j.polar.2021.100684
    [3] GREENWALD R A. History of the Super Dual Auroral Radar Network (SuperDARN)-I: pre-SuperDARN developments in high frequency radar technology for ionospheric research and selected scientific results[J]. History of Geo- and Space Sciences, 2021, 12(1): 77-93 doi: 10.5194/hgss-12-77-2021
    [4] CHISHAM G, PINNOCK M. Assessing the contamination of SuperDARN global convection maps by non-F-region backscatter[J]. Annales Geophysicae, 2002, 20(1): 13-28 doi: 10.5194/angeo-20-13-2002
    [5] ULLAH S, LI H L, RAUF A, et al. Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region[J]. Earth and Planetary Physics, 2021, 5(2): 196-204 doi: 10.26464/epp2021016
    [6] VILLAIN J P, GREENWALD R A, BAKER K B, et al. HF radar observations of E region plasma irregularities produced by oblique electron streaming[J]. Journal of Geophysical Research: Space Physics, 1987, 92(A11): 12327-12342 doi: 10.1029/JA092iA11p12327
    [7] BARTHES L, ANDRÉ R, CERISIER J C, et al. Separation of multiple echoes using a high-resolution spectral analysis for SuperDARN HF radars[J]. Radio Science, 1998, 33(4): 1005-1017 doi: 10.1029/98RS00714
    [8] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280 doi: 10.1109/TAP.1986.1143830
    [9] GREENWALD R A, BAKER K B, DUDENEY J R, et al. Darn/superdarn: a global view of the dynamics of high-latitude convection[J]. Space Science Reviews, 1995, 71(71): 761-796
    [10] PONOMARENKO P V, WATERS C L, MENK F W. Factors determining spectral width of HF echoes from high latitudes[J]. Annales Geophysicae, 2007, 25(3): 675-687 doi: 10.5194/angeo-25-675-2007
    [11] PONOMARENKO P V, WATERS C L, MENK F W. Effects of mixed scatter on SuperDARN convection maps[J]. Annales Geophysicae, 2008, 26(6): 1517-1523 doi: 10.5194/angeo-26-1517-2008
    [12] BLANCHARD G T, SUNDEEN S, BAKER K B. Probabilistic identification of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics[J]. Radio Science, 2009, 44(5): RSSO12
    [13] RIBEIRO A J, RUOHONIEMI J M, BAKER J B H, et al. A new approach for identifying ionospheric backscatter in midlatitude SuperDARN HF radar observations[J]. Radio Science, 2011, 46(4): RS4011
    [14] BURRELL A G, MILAN S E, PERRY G W, et al. Automatically determining the origin direction and propagation mode of high-frequency radar backscatter[J]. Radio Science, 2015, 50(12): 1225-1245 doi: 10.1002/2015RS005808
    [15] CHANG J F, LU Y, XUE P, et al. Iterative clustering pruning for convolutional neural networks[J]. Knowledge-Based Systems, 2023, 265: 110386 doi: 10.1016/j.knosys.2023.110386
    [16] CHUI K T. Driver stress recognition for smart transportation: applying multiobjective genetic algorithm for improving fuzzy c-means clustering with reduced time and model complexity[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 100668 doi: 10.1016/j.suscom.2022.100668
    [17] DUTTA R, DAS N, MAJUMDER M, et al. Aspect based sentiment analysis using multi‐criteria decision‐making and deep learning under COVID‐19 pandemic in India[J]. CAAI Transactions on Intelligence Technology, 2023, 8(1): 219-234 doi: 10.1049/cit2.12144
    [18] WAGNER F H, DALAGNOL R, SÁNCHEZ A H, et al. K-textures, a self-supervised hard clustering deep learning algorithm for satellite image segmentation[J]. Frontiers in Environmental Science, 2022, 10: 946729 doi: 10.3389/fenvs.2022.946729
    [19] ANITHA T, LATHA G P L, PRASAD M S. A proficient adaptive K-means based brain tumor segmentation and detection using deep learning scheme with PSO[J]. Journal of Computational Science & Intelligent Technologies, 2020, 1(3): 9-14
    [20] 刘二小, 胡红桥, 刘瑞源, 等. 中山站高频雷达回波的日变化特征及地磁活动的影响[J]. 地球物理学报, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024

    LIU E X, HU H Q, LIU R Y, et al. Diurnal variation of the HF radar echoes at Zhongshan Station and the influence of geomagnetic activity[J]. Chinese Journal of Geophysics, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024
    [21] RIBEIRO A J, RUOHONIEMI J M, PONOMARENKO P V, et al. A comparison of SuperDARN ACF fitting methods[J]. Radio Science, 2013, 48(3): 274-282 doi: 10.1002/rds.20031
    [22] KIM Y, HEILAND J. Convolutional autoencoders, clustering and POD for low-dimensional parametrization of navier-stokes equations[OL]. arXiv preprint arXiv: 2302.01278, 2023
    [23] HINTON G E, ZEMEL R S. Autoencoders, minimum description length and Helmholtz free energy[C]//Proceedings of the 6th International Conference on Neural Information Processing Systems. Denver: Morgan Kaufmann Publishers Inc. , 1993
    [24] HU H Q, LIU E X, LIU R Y, et al. Statistical characteristics of ionospheric backscatter observed by SuperDARN Zhongshan radar in Antarctica[J]. Advances in Polar Science, 2013, 24(1): 19-31
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  175
  • PDF下载量:  45
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-11-23
  • 修回日期:  2023-12-21
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回