留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间核电源朗肯循环系统的研究进展

王洁炜 刘凯旋 杨夷 吕征

王洁炜, 刘凯旋, 杨夷, 吕征. 空间核电源朗肯循环系统的研究进展[J]. 空间科学学报, 2024, 44(5): 884-893. doi: 10.11728/cjss2024.05.2023-0141
引用本文: 王洁炜, 刘凯旋, 杨夷, 吕征. 空间核电源朗肯循环系统的研究进展[J]. 空间科学学报, 2024, 44(5): 884-893. doi: 10.11728/cjss2024.05.2023-0141
WANG Jiewei, LIU Kaixuan, YANG Yi, LÜ Zheng. Research Progress of Rankine Cycle System for Space Nuclear Power System (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 884-893 doi: 10.11728/cjss2024.05.2023-0141
Citation: WANG Jiewei, LIU Kaixuan, YANG Yi, LÜ Zheng. Research Progress of Rankine Cycle System for Space Nuclear Power System (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 884-893 doi: 10.11728/cjss2024.05.2023-0141

空间核电源朗肯循环系统的研究进展

doi: 10.11728/cjss2024.05.2023-0141 cstr: 32142.14.cjss2024.05.2023-0141
详细信息
    作者简介:
    • 王洁炜 男, 1998年2月出生于浙江省绍兴市, 2021年本科毕业于东南大学, 现为中国原子能科学研究院硕士研究生, 研究领域为特种动力反应堆热工水力研究. E-mail: wangjw1998@163.com
    通讯作者:
    • 吕征 男, 研究员, 博士, 1977年生, 研究领域为反应堆工程研究. E-mail: carrlvzheng@163.com
  • 中图分类号: TL411

Research Progress of Rankine Cycle System for Space Nuclear Power System

  • 摘要: 空间核电源朗肯循环具有热电转换效率高、废热辐射面积小、功率变化灵活等特点, 是空间核反应堆电源领域的研究热点. 以空间核能朗肯循环的发展与研究现状为基础, 对空间核能朗肯循环的工质及选择标准和原则进行分析. 对不同功率等级的空间核能朗肯循环系统设计方案进行对比, 分析各个系统方案的反应堆设计、各回路工质选择、朗肯循环功率设计、关键部件设计等, 提出空间核电源朗肯循环的主要研究方向, 包括工质特性、朗肯循环关键部件、反应堆芯设计等, 而新型金属材料、高性能关键设备设计和地面集成方案等将是有待继续深入研究的关键技术问题. 分析结果可对中国未来空间核能朗肯循环的设计提供一定参考.

     

  • 图  1  SNAP-8系统

    Figure  1.  System of SNAP-8

    图  2  100 kW双回路朗肯循环系统

    Figure  2.  100 kW dual circuit Rankine cycle system

    图  3  带回热和再热的100 kW朗肯循环系统

    Figure  3.  100 kW Rankine cycle schematic with feed heat and reheat

    图  4  300 kW级系统原理

    Figure  4.  300 kW level system schematic diagram

    图  5  蒸汽发生器

    Figure  5.  Steam generator

    图  6  300 kW级系统汽轮机设计

    Figure  6.  Design drawing of 300 kW system steam turbine

    图  7  SPR-6系统

    Figure  7.  System of SPR-6

    图  8  15 MW级方案朗肯循环系统

    Figure  8.  15 MW level scheme Rankine cycle system

    表  1  四种液态金属热物性参数

    Table  1.   Thermophysical parameters of four liquid metals

    元素 熔点/K 沸点/K 液体密度/(g·cm–3) 液体热容/(J·g–1·K–1) 液体汽化热/(kJ·g–1) 液体热导率/(W·m–1·K–1)

    锂Li 453.5 1620 0.512 4.07 22.08 71.1
    钠Na 371.0 1156 0.929 1.38 4.20 93.0
    钾K 336.5 1033 0.850 0.84 2.55 102.4
    汞Hg 234.0 630 13.590 0.14 0.29 8.3
    下载: 导出CSV

    表  2  回热和再热对100 kW系统效率和质量的影响

    Table  2.   Effect of feed heat and reheat on 100 kW system efficiency and mass

    Number of feed
    heaters
    Reheat temperature/K Cycle efficiency/(%) Relative mass Δ mass /kg
    0 0 23.6 1.00 0
    3 0 24.8 0.97 –88
    0 160 28.0 0.92 –256
    3 160 31.5 0.86 –436
    下载: 导出CSV

    表  3  基于SP-100液态金属朗肯循环反应堆系统设计方案

    Table  3.   Design scheme of liquid metal Rankine cycle reactor system based on SP-100

    Concept Fuel Clad Neutron spectrum Reactor coolant Coolant outlet temp/K Power conversion Technology base
    UN/Nb-1 Zr/Li-K UN Nb-lZr Fast Li 1350 K-Rankine SP-100
    UN/Nb-1 Zr/Ga-K UN Nb-lZr Fast Ga 1350 K-Rankine SP-100
    UN/Nb-1 Zr/Li-Na UN Nb-lZr Fast Li 1350 Na-Rankine SP-100
    UN/Nb-1 Zr/Ga-Na UN Nb-lZr Fast Ga 1350 Na-Rankine SP-100
    UN/ASTAR 811 C/Li-K UN ASTAR811 C Fast Li 1500 K-Rankine SP-100a
    UN/ASTAR 811 C/Ga-K UN ASTAR811 C Fast Ga 1500 K-Rankine SP-100a
    UN/ASTAR 811 C/Li-Na UN ASTAR811 C Fast Li 1500 Na-Rankine SP-100a
     上角a表示改进型.
    下载: 导出CSV

    表  4  各种配置的朗肯循环分析

    Table  4.   Rankine cycle analysis for various configurations

    Parameter UN/
    Nb1 Zr/Li-K
    UN/
    Nb1 Zr/Ga-K
    UN/
    Nb1 Zr/Li-Na
    UN/
    ASTAR811 C/
    Li-K
    UN/
    ASTAR811 C/
    Ga-K
    UN/
    ASTAR811 C/
    Li-Na
    Turbine inlet temperature/K 1260 1260 1260 1410 1410 1410
    Reactor thermal power/kW 59108 59108 62026 49819 49819 49436
    Thermal efficiency/(%) 25.4 25.4 24.2 30.1 30.1 30.3
    Heat exchanger mass/kg 2254 3296 1205 868 960 493
    Power conditioning mass/kg 15106 15106 15106 15106 15106 15106
    Radiator mass/kg 14654 42496 15313 11691 35092 11612
    Shield mass/kg 9709 5621 9895 8216 3855 8196
    Turbine/Generator mass/kg 43614 43614 292801 57820 57820 468938
    Main radiator area/m2 3397 3397 3626 2665 2665 2635
    Low-temperature radiator area/m2 283 283 289 264 264 263
    Radiator mass/kg 11039 11039 11746 8789 8789 8696
    Total mass/kg 96376 121172 346065 102490 121622 513041
    Specific mass/(kg·kW–1) 6.43 8.08 23.07 6.83 8.11 34.2
    下载: 导出CSV
  • [1] 苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016

    SU Zhuting, YANG Jicai, KE Guotu. Space Nuclear Power[M]. Shanghai: Shanghai Jiao Tong University Press, 2016
    [2] GUHARKIN H E. Space Nuclear Power Sources “Romanska” and “Yenisei” with Thermoelectric Conversion and Thermionic Conversion[M]. LIU Shu, ZHANG Ling, SONG Chenwei, trans. Beijing: China Atomic Energy Publishing House, 2016: 61-66
    [3] 马世俊, 杜辉, 周继时, 等. 核动力航天器发展历程(下)[J]. 中国航天, 2014(5): 32-35

    MA Shijun, DU Hui, ZHOU Jishi, et al. Development history of nuclear powered spacecraft (part 2)[J]. Aerospace China, 2014(5): 32-35
    [4] WANG C L, LIU T C, TANG S M, et al. Thermal–hydraulic analysis of space nuclear reactor TOPAZ-II with modified RELAP5[J]. Nuclear Science and Techniques, 2019, 30(1): 12 doi: 10.1007/s41365-018-0537-3
    [5] STAUB D W. SNAP Programs: Summary Report[R]. Canoga Park: Atomics International Division, 1973
    [6] PITTS J H, JESTER M H L. Rankine Cycle Systems Studies for Nuclear Space Power[R]. Livermore: Lawrence Radiation Laboratory, 1968
    [7] MASON L S, BLOOMFIELD H S, HAINLEY D C. SP-100 power system conceptual design for lunar base applications[C]//6th Symposium on Space Nuclear Power Systems. Albuquerque: Institute for Space Nuclear Power Studies, 1989
    [8] LAHEY JR R T, DHIR V. Research in Support of the Use of Rankine Cycle Energy Conversion Systems for Space Power and Propulsion[R]. Hanover: NASA Center for Aerospace Information, 2004
    [9] 张震. 空间核动力金属朗肯循环动态热电转换系统仿真分析及优化[D]. 哈尔滨: 哈尔滨工业大学, 2021. DOI: 10.27061/d.cnki.ghgdu.2021.003978

    ZHANG Zhen. Simulation Analysis and Optimization of Metal Rankine Cycle Dynamic Thermoelectric Conversion System for Space Nuclear Power[D]. Harbin: Harbin Institute of Technology, 2021. DOI: 10.27061/d.cnki.ghgdu. 2021.003978
    [10] 程献伟. 空间核能液态金属朗肯循环的热力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2017

    CHENG Xianwei. Thermodynamic Analysis of Space Nuclear Power System Based on Liquid Metal Rankine Cycle[D]. Harbin: Harbin Institute of Technology, 2017
    [11] JARRETT A A. SNAP 2: Summary Report[R]. Canoga Park: Atomics International Division, 1973
    [12] 许春阳. 俄罗斯兆瓦级空间核动力装置研发进展(内部报告)[R]. 北京: 中国核科技信息与经济研究院, 2012

    XU Chunyang. Research and Development Progress of Russian Megawatt Space Nuclear Power Plant (Internal Report)[R]. Beijing: China Institute of Nuclear Information & Economics, 2012
    [13] YOUNG H C, CLARK D L, GRINDELL A G. Comparison of Boiler Feed Pumps for Cesium and Potassium Rankine Cycle Systems[R]. Oak Ridge: Oak Ridge National Laboratory, 1968
    [14] FRAAS A P, BURTON D W, LAVERNE M E, et al. Design Comparison of Cesium and Potassium Vapor Turbine-Generator Units for Space Power Plants[R]. Oak Ridge: Oak Ridge National Laboratory, 1969
    [15] YOUNG H C, GRINDELL A G. Summary of Design and Test Experience with Cesium and Potassium Components and Systems for Space Power Plants[R]. Oak Ridge: Oak Ridge National Laboratory, 1967
    [16] THUR G M. SNAP-8 power conversion system assessment[C]//Intersociety Energy Conversion Engineering Conference. Boulder: National Aeronautics and Space Administration, 1968
    [17] GERTSMA L G, THOLLOT P A, MEDWID D W. Review of the double containment Ta/SS SNAP-8 boiler[C]//Intersociety Energy Conversion Engineering Conference. Boulder: National Aeronautics and Space Administration, 1968
    [18] 马世俊, 唐玉华, 朱安文, 等. 空间核动力的进展[M]. 北京: 中国宇航出版社, 2019

    MA Shijun, TANG Yuhua, ZHU Anwen, et al. Progress in Space Nuclear Power[M]. Beijing: China Aerospace Publishing House, 2019
    [19] YODER G L, CARBAJO J J, MURPHY R W, et al. Potassium Rankine cycle system design study for space nuclear electric propulsion[C]//3rd International Energy Conversion Engineering Conference. San Francisco: AIAA, 2005: 5637
    [20] HELLER J A, MOSS T A, BARNA G J. Study of a 300-Kilowatt Rankine-Cycle Advanced Nuclear-Electric Space-Power System[R]. Washington: National Aeronautics and Space Administration, 1969
    [21] MILLER J V. Characteristics of A Space-Power Nuclear Reactor with Considerations for Venting or Containing Gaseous Fission Products[R]. Washington: National Aeronautics and Space Administration, 1968
    [22] VARLJEN T C. The Transport of Atomized Drops in Wet Vapor Turbines[R]. Pittsburgh: Westinghouse Astronuclear Laboratory, 1968
    [23] RACKLEY R A. Potassium Turboalternator (KTA) Preliminary Design Study: Volume III-Phase II KTA Final Design[R]. Washington: National Aeronautics and Space Administration, 1970
    [24] LONGHURST G R, HARVEGO E A, SCHNITZLER B G, et al. Multi Megawatt Power System Analysis Report[R]. Idaho Falls: Idaho National Laboratory, 2001
    [25] PITTS J H, WALTER C E. Conceptual design of a 10-MWe nuclear Rankine system for space power[J]. Journal of Spacecraft and Rockets, 1970, 7(3): 259-265 doi: 10.2514/3.29917
    [26] WERNER R W, CARLSON G A. Heat Pipe Radiator for A 50-MWt Space Power Plant[R]. Livermore: Lawrence Radiation Laboratory, 1967
    [27] LONGHURST G R, SCHNITZLER B G, PARKS B T. Multi-Megawatt Power system trade study[J]. AIP Conference Proceedings, 2002, 608(1): 1075-1083
    [28] Morgon R. Comparison of high power nuclear systems for space[C]//Proceedings of the 18th Intersociety Energy Conversion Conference, Orlando, FL, USA. 1983: 21-26
    [29] TRUSCELLO V C, RUTGER L L. The SP‐100 power system[J]. AIP Conference Proceedings, 1992, 246(1): 1-23
    [30] 中国核科技信息与经济研究院. 世界反应堆大全: RAPID星表反应堆电源[M]. 北京: 原子能出版社, 2015: 152

    China Institute of Nuclear Technology Information and Economics. World Reactor Encyclopedia: RAPID Catalogue Reactor Power Supply[M]. Beijing: Atomic Energy Publishing House, 2015: 152
    [31] 张震, 张昊春, 张冬, 等. 兆瓦级空间核电源碱金属朗肯循环热电转换系统设计[J]. 上海航天(中英文), 2022, 39(2): 76-84 doi: 10.19328/j.cnki.2096-8655.2022.02.012

    ZHANG Zhen, ZHANG Haochun, ZHANG Dong, et al. Design of alkali metal Rankine cycle thermoelectric conversion system for megawatt space nuclear plant[J]. Aerospace Shanghai (Chinese & English), 2022, 39(2): 76-84 doi: 10.19328/j.cnki.2096-8655.2022.02.012
    [32] 张昊春, 程献伟, 余红星, 等. 空间核能液态金属朗肯循环的热力学性能分析[J]. 工程热物理学报, 2018, 39(2): 242-248

    ZHANG Haochun, CHENG Xianwei, YU Hongxing, et al. Thermodynamic analysis of space nuclear power system based on liquid metal Rankine cycle[J]. Journal of Engineering Thermophysics, 2018, 39(2): 242-248
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  776
  • HTML全文浏览量:  203
  • PDF下载量:  55
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-12-01
  • 修回日期:  2024-03-19
  • 网络出版日期:  2024-05-11

目录

    /

    返回文章
    返回