留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方柱微结构内气液界面振荡特性数值研究

王素龙 杜王芳 何发龙 赵彦琳 姚军 赵建福

王素龙, 杜王芳, 何发龙, 赵彦琳, 姚军, 赵建福. 方柱微结构内气液界面振荡特性数值研究[J]. 空间科学学报, 2024, 44(5): 863-872. doi: 10.11728/cjss2024.05.2024-0030
引用本文: 王素龙, 杜王芳, 何发龙, 赵彦琳, 姚军, 赵建福. 方柱微结构内气液界面振荡特性数值研究[J]. 空间科学学报, 2024, 44(5): 863-872. doi: 10.11728/cjss2024.05.2024-0030
WANG Sulong, DU Wangfang, HE Falong, ZHAO Yanlin, YAO Jun, ZHAO Jianfu. Numerical Simulation of Interfacial Oscillation Inside a Micro-pin-finned Structure (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 863-872 doi: 10.11728/cjss2024.05.2024-0030
Citation: WANG Sulong, DU Wangfang, HE Falong, ZHAO Yanlin, YAO Jun, ZHAO Jianfu. Numerical Simulation of Interfacial Oscillation Inside a Micro-pin-finned Structure (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 863-872 doi: 10.11728/cjss2024.05.2024-0030

方柱微结构内气液界面振荡特性数值研究

doi: 10.11728/cjss2024.05.2024-0030 cstr: 32142.14.cjss2024.05.2024-0030
基金项目: 国家重点研发计划项目资助(2022YFF0503502)
详细信息
    作者简介:
    • 王素龙 男, 1999年12月出生于江苏省徐州市, 现为中国石油大学(北京)硕士研究生, 主要研究方向为多相流体力学. E-mail: 18751526319@139.com
    通讯作者:
    • 杜王芳 女, 现为中国科学院力学研究所副研究员, 主要研究方向为微重力多相热流体、空间流体管理等. E-mail: duwangfang@imech.ac.cn
    • 赵彦琳 女, 现为中国石油大学(北京)热能工程系教授, 博士生导师, 主要研究方向为多相流体力学、多相流冲刷腐蚀等. E-mail: ylzhao@cup.edu.cn
  • 中图分类号: O359+.1,V448.21

Numerical Simulation of Interfacial Oscillation Inside a Micro-pin-finned Structure

  • 摘要: 重力突然下降引起的气液界面振荡和重构对空间流体管理具有重要影响. 考虑到贮箱壁面润湿特性在该问题中的重要作用, 借鉴传热强化领域方柱微结构表面设计思想, 提出一种利用方柱微结构壁面对液体振荡的衰减作用实现空间贮箱被动防晃的方法. 采用流体体积法(VOF)对一种方柱微结构形成的异形基本单元内气液界面振荡特性进行数值模拟, 分析自由液面随时间的变化特征, 并讨论系统振荡频率、阻尼特性等与能量耗散特性密切相关的参数变化规律. 研究发现, 初始液位主要影响液面振幅, 振幅随着初始液位高度的减小而增大, 但是液位过低时振荡过程会出现液面触底而加剧耗散; 接触角对振幅和阻尼比都有影响, 接触角增大, 振幅和阻尼比均有所减小.

     

  • 图  1  方柱微结构表面

    Figure  1.  Surface diagram of the square column

    图  2  基本研究单元

    Figure  2.  Schematic diagram of the basic research unit

    图  3  网格划分

    Figure  3.  Diagram of grid division

    图  4  特征点位置

    Figure  4.  Feature point location diagram

    图  5  点5初始时刻的振荡

    Figure  5.  Point 5 oscillation at the initial moment

    图  6  网格无关性验证

    Figure  6.  Grid independence verification

    图  7  各点随时间的振荡曲线

    Figure  7.  Oscillating images of each point over time

    图  8  0.5 ms时液面构型

    Figure  8.  Interface configuration at 0.5 ms

    图  9  界面位置

    Figure  9.  Interface position diagram

    图  10  界面位置演变

    Figure  10.  Interface position evolution

    图  11  五个特征点的初始振动

    Figure  11.  Initial vibration of five characteristic points

    图  12  质心的频谱分析

    Figure  12.  Analysis of centroid spectrum

    图  13  不同初始液位下质心的振动

    Figure  13.  Vibration of center of mass at different initial liquid levels

    图  14  不同接触角下质心的振动

    Figure  14.  Vibration of the center of mass at different contact angles

    图  15  不同重力水平下质心的振动

    Figure  15.  Vibrations of the centroid at different gravitational levels

    表  1  氨工质的气液两相流体物性参数

    Table  1.   Physical properties of gas and liquid phase of ammonia

    特性气体液体
    密度/(kg·m–3)6.7610.2
    动力黏度/(μPa$ \cdot $s)9.68138.32
    表面张力/(N·m–1)0.0072
    接触角/(°)30
    下载: 导出CSV

    表  2  特征点和质心的振动拟合参数

    Table  2.   Vibration fitting parameters of feature points and centroid

    Point $ A_0 $/mm $ \zeta $ $ {\omega }_{\mathrm{d}} $/(rad·s–1)
    1 1.90×10–5 0.0776 78000
    2 7.00×10–6 0.0362 170000
    3 1.35×10–5 0.0817 78000
    4 8.15×10–6 0.0665 78000
    5 2.10×10–5 0.0742 78000
    质心 1.70×10–6 0.0793 75398
    下载: 导出CSV

    表  3  不同初始液位下的振动拟合参数

    Table  3.   Vibration fitting parameters at different initial liquid levels

    h/μm $ {A}_{0} $/mm $ \zeta $ $ {\omega }_{\mathrm{d}} $/(rad·s–1)
    20 1.1×10–6 0.0713 64114
    30 1.7×10–6 0.0793 75398
    60 1.0×10–6 0.0624 87965
    90 7.0×10–7 0.0624 87965
    120 5.0×10–7 0.0624 87965
    下载: 导出CSV

    表  4  不同接触角下的振动拟合参数

    Table  4.   Vibration fitting parameters at different contact angles

    θ $ {A}_{0} $/mm $ \zeta $ $ {\omega }_{\mathrm{d}} $/(rad·s–1)
    15° 1.6×10–6 0.1055 75398
    30° 1.0×10–6 0.0624 87965
    45° 4.0×10–7 0.0298 100530
    60° 1.6×10–7 0.0219 100530
    下载: 导出CSV
  • [1] AKYILDIZ H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank[J]. Journal of Sound and Vibration, 2012, 331(1): 41-52 doi: 10.1016/j.jsv.2011.08.002
    [2] IBRAHIM R A, HEINRICH R T. Experimental investigation of liquid sloshing under parametric random excitation[J]. Journal of Applied Mechanics, 1988, 55(2): 467-473 doi: 10.1115/1.3173701
    [3] CUI D L, YAN S Z, GUO X S, et al. Parametric resonance of liquid sloshing in partially filled spacecraft tanks during the powered-flight phase of rocket[J]. Aerospace Science and Technology, 2014, 35: 93-105 doi: 10.1016/j.ast.2014.03.006
    [4] DALMON A, LEPILLIEZ M, TANGUY S, et al. Comparison between the FLUIDICS experiment and direct numerical simulations of fluid sloshing in spherical tanks under microgravity conditions[J]. Microgravity Science and Technology, 2019, 31(1): 123-138 doi: 10.1007/s12217-019-9675-4
    [5] YANG W J, ZHANG T T, LI C, et al. Numerical simulation of pitching sloshing under microgravity[J]. Journal of Applied Fluid Mechanics, 2019, 12(5): 1527-1537 doi: 10.29252/jafm.12.05.29677
    [6] ARNDT T, DREYER M. Damping behavior of sloshing liquid in laterally excited cylindrical propellant vessels[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 1085-1088 doi: 10.2514/1.35019
    [7] LI J C, LIN H, ZHAO J F, et al. Dynamic behaviors of liquid in partially filled tank in short-term microgravity[J]. Microgravity Science and Technology, 2018, 30(6): 849-856 doi: 10.1007/s12217-018-9642-5
    [8] 魏列, 杜王芳, 薛子扬, 等. 重力跳变引起的贮箱内气液界面波传播规律[J]. 空间科学学报, 2023, 43(5): 875-882 doi: 10.11728/cjss2023.05.2023-yg12

    WEI Lie, DU Wangfang, XUE Ziyang, et al. Wave propagation law at the gas-liquid interface in a storage tank due to gravity jumps[J]. Chinese Journal of Space Science, 2023, 43(5): 875-882 doi: 10.11728/cjss2023.05.2023-yg12
    [9] 苗楠, 王天舒, 李俊峰. 微重环境下液体晃动研究进展[J]. 力学与实践, 2016, 38(3): 229-236 doi: 10.6052/1000-0879-15-185

    MIAO Nan, WANG Tianshu, LI Junfeng. Research progress of liquid sloshing in microgravity[J]. Mechanics in Engineering, 2016, 38(3): 229-236 doi: 10.6052/1000-0879-15-185
    [10] AOKI K, NAKAMURA T, IGARASHI I, et al. Experimental investigation of baffle effectiveness on nonlinear propellant sloshing in RLV[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati: AIAA, 2007
    [11] MALEKI A, ZIYAEIFAR M. Sloshing damping in cylindrical liquid storage tanks with baffles[J]. Journal of Sound and Vibration, 2008, 311(1/2): 372-385
    [12] 杨唱, 孙冰, 方杰. 航天器贮箱出流过程液体晃动及防晃[J]. 航空动力学报, 2018, 33(12): 3065-3072

    YANG Chang, SUN Bing, FANG Jie. Liquid sloshing and anti-sloshing of spacecraft tank during outflow[J]. Journal of Aerospace Power, 2018, 33(12): 3065-3072
    [13] 于瑾, 李宝海, 王求生, 等. 贮箱防晃挡板结构形式和晃动阻尼研究[J]. 导弹与航天运载技术, 2021(5): 147-149, 154

    YU Jin, LI Baohai, WANG Qiusheng, et al. The research of sloshing suppression baffle structure and slosh damping of propellant tank[J]. Missiles and Space Vehicles, 2021(5): 147-149, 154
    [14] WÖLK G, DREYER M, RATH H J, et al. Damped oscillations of a liquid/gas surface upon step reduction in gravity[J]. Journal of Spacecraft and Rockets, 1997, 34(1): 110-117 doi: 10.2514/2.3179
    [15] GERSTMANN J, DREYER M E, RATH H J. Surface reorientation upon step reduction in gravity[J]. AIP Conference Proceedings, 2000, 504(1): 847-853
    [16] MICHAELIS M, DREYER M E, RATH H J. Experimental investigation of the liquid interface reorientation upon step reduction in gravity[J]. Annals of the New York Academy of Sciences, 2002, 974(1): 246-260 doi: 10.1111/j.1749-6632.2002.tb05911.x
    [17] MICHAELIS M, GERSTMANN J, DREYER M E, et al. Damping behavior of the free liquid interface oscillation upon step reduction in gravity[J]. Proceedings in Applied Mathematics and Mechanics, 2003, 2(1): 320-321 doi: 10.1002/pamm.200310144
    [18] LI J C, LIN H, LI K, et al. Liquid sloshing in partially filled capsule storage tank undergoing gravity reduction to low/micro-gravity condition[J]. Microgravity Science and Technology, 2020, 32(4): 587-596 doi: 10.1007/s12217-020-09801-3
    [19] LI J C, LIN H, LI K, et al. Dynamic behavior in a storage tank in reduced gravity using dynamic contact angle method[J]. Microgravity Science and Technology, 2020, 32(6): 1039-1048 doi: 10.1007/s12217-020-09831-x
    [20] ÖNER D, MCCARTHY T J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability[J]. Langmuir, 2000, 16(20): 7777-7782 doi: 10.1021/la000598o
    [21] YOSHIMITSU Z, NAKAJIMA A, WATANABE T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18(15): 5818-5822 doi: 10.1021/la020088p
    [22] LIU B, LANGE F F. Pressure induced transition between superhydrophobic states: Configuration diagrams and effect of surface feature size[J]. Journal of Colloid and Interface Science, 2006, 298(2): 899-909 doi: 10.1016/j.jcis.2006.01.025
    [23] 张永海, 薛艳芳, 魏进家, 等. 微重力下微结构表面池沸腾气泡动力学研究[J]. 工程热物理学报, 2013, 34(11): 2112-2115

    ZHANG Yonghai, XUE Yanfang, WEI Jinjia, et al. Pool boiling heat transfer and bubble dynamics over micro-pin-finned surface under microgravity[J]. Journal of Engineering Thermophysics, 2013, 34(11): 2112-2115
    [24] 薛艳芳, 魏进家, 赵建福, 等. 微重力下微结构表面强化沸腾换热研究[J]. 工程热物理学报, 2012, 33(3): 441-444

    XUE Yanfang, WEI Jinjia, ZHAO Jianfu, et al. Boiling heat transfer enhancement by using micro-structure surface under microgravity[J]. Journal of Engineering Thermophysics, 2012, 33(3): 441-444
    [25] 孔新, 张永海, 魏进家, 等. 微结构表面微重力下沸腾换热及临界机理研究[J]. 工程热物理学报, 2023, 44(6): 1587-1593

    KONG Xin, ZHANG Yonghai, WEI Jinjia, et al. Investigation of boiling heat transfer performance and mechanism of critical heat flux for micro-structured surface under microgravity[J]. Journal of Engineering Thermophysics, 2023, 44(6): 1587-1593
    [26] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225 doi: 10.1016/0021-9991(81)90145-5
    [27] 魏列, 杜王芳, 赵建福, 等. 微重力条件下部分充液贮箱气液界面波动特性的数值模拟[J]. 力学学报, 2022, 54(4): 1004-1011 doi: 10.6052/0459-1879-21-645

    WEI Lie, DU Wangfang, ZHAO Jianfu, et al. Numerical study on gas-liquid interface waves in partially filled tanks under microgravity condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1004-1011 doi: 10.6052/0459-1879-21-645
    [28] Weislogel M M. Fluid interface phenomena in a low-gravity environment: recent results from drop tower experimentation[C]//Space Forum. Gordon and Breach Science Publishers, 1998, 3(GRC-E-DAA-TN58785)
    [29] BOSANQUET C H. LV. On the flow of liquids into capillary tubes[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1923, 45(267): 525-531 doi: 10.1080/14786442308634144
    [30] CAI J C, CHEN Y, LIU Y, et al. Capillary imbibition and flow of wetting liquid in irregular capillaries: A 100-year review[J]. Advances in Colloid and Interface Science, 2022, 304: 102654 doi: 10.1016/j.cis.2022.102654
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  115
  • PDF下载量:  47
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-06-06
  • 网络出版日期:  2024-07-24

目录

    /

    返回文章
    返回