留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2018-2019年平流层顶抬升事件期间的准定常行星波

苏伟 黄春明

苏伟, 黄春明. 2018-2019年平流层顶抬升事件期间的准定常行星波[J]. 空间科学学报, 2024, 44(6): 1056-1067. doi: 10.11728/cjss2024.06.2024-0001
引用本文: 苏伟, 黄春明. 2018-2019年平流层顶抬升事件期间的准定常行星波[J]. 空间科学学报, 2024, 44(6): 1056-1067. doi: 10.11728/cjss2024.06.2024-0001
SU Wei, HUANG Chunming. Quasi-stationary Planetary Waves during the 2018–2019 Elevated Stratopause Event (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1056-1067 doi: 10.11728/cjss2024.06.2024-0001
Citation: SU Wei, HUANG Chunming. Quasi-stationary Planetary Waves during the 2018–2019 Elevated Stratopause Event (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1056-1067 doi: 10.11728/cjss2024.06.2024-0001

2018-2019年平流层顶抬升事件期间的准定常行星波

doi: 10.11728/cjss2024.06.2024-0001 cstr: 32142.14.cjss.2024-0001
基金项目: 国家自然科学基金项目资助(42074182)
详细信息
    作者简介:
    • 苏伟 男, 1997年4月出生于湖北省荆州市, 武汉大学2021级空间物理系硕士. 目前研究方向为中高层大气动力学. E-mail: 849162319@qq.com
    通讯作者:
    • 黄春明 女, 武汉大学电子信息学院空间物理系教授, 博士生导师. 多年从事大气动力学研究, 在中高层大气波动的数值模拟和观测研究方面做出了较好的工作, 主持了多项国家自然科学基金面上项目和国家863项目. E-mail: huangcm@whu.edu.cn
  • 中图分类号: P351

Quasi-stationary Planetary Waves during the 2018–2019 Elevated Stratopause Event

  • 摘要: 2018-2019年北半球高纬地区的冬季发生了平流层顶抬升事件, 各种大气波动在该事件中所扮演的角色尚不完全清楚. 利用卫星和再分析数据, 给出了在这次ES事件发生前后平流层顶和背景大气的变化, 深入研究了准定常行星波在平流层和中间层下部的活动. 结果显示, 纬向波数为1的准定常行星1波在12月初开始增强, 在12月中旬达到最大值. 在整个12月, 即原平流层顶的下降与增温阶段, 都呈现出对背景大气强烈的西向波强迫. 在平流层顶抬升事件发生后, 该波活动减弱, 对背景大气的拽力很弱, 可能没有参与平流层顶抬升事件的后续阶段. 纬向波数为2的准定常行星在ES事件发生前活动较弱, 而在1月中旬开始增强, 在1月中旬到2月末, 即高平流层顶形成阶段以及之后的下降与增温阶段, 呈现出对背景大气的西向波强迫, 强迫中心随高度的下降与高平流层顶的下降一致, 说明该波主要在这一阶段发挥作用.

     

  • 图  1  从MERRA-2再分析数据(a)、MLS(b)和ERA5(c)得到的70°N纬向平均日均温度的时间–高度剖面

    Figure  1.  Time-height sections of zonal-mean and daily-mean temperature at 70°N obtained from MERRA-2(a), MLS(b), and ERA5 (c)

    图  2  从MERRA-2数据中提取的波数为1(左列)和波数为2(右列)的准定常行星波纬向风速、经向风速和温度分量在70°N处的高度–时间分布(红色实线代表平流层顶, 白色实线代表东向的纬向平均纬向风速, 而白色虚线则代表西向的纬向平均纬向风速)

    Figure  2.  Altitude-time distributions of SPW1 (left) and SPW2 (right) for zonal wind, meridional wind and temperature at 70°N, extracted from MERRA-2 data (The solid red line in the figure represents the stratopause, the solid white line represents the eastward zonal-mean zonal winds, and the dashed white line represents the westward zonal-mean zonal winds)

    图  3  从MERRA-2数据中提取的2018年12月1日至2019年2月1日70°N处准定常行星1波纬向平均涡度的经向梯度(蓝色实线代表零刻度线)

    Figure  3.  Time-altitude sections of the potential vorticity gradient for SPW1 at 70°N for 1 December 2018 to 1 February 2019, extracted from MERRA-2 data (Solid blue line in the graph represents the zero line)

    图  4  从MERRA-2数据中提取的2018年12月1日至2019年2月28日70°N处准定常行星波1的EP通量散度(白色实线代表零刻度线,黑色实线代表东向的纬向平均纬向风速, 黑色虚线则代表西向的纬向平均纬向风速)

    Figure  4.  EP flux divergence for SPW1 at 70°N from 1 December 2018 to 28 February 2019 extracted from MERRA-2 data (Solid white line in the graph represents the zero line, the solid white line represents the eastward zonal-mean zonal winds, and the dashed white line represents the westward zonal-mean zonal winds)

    图  5  从MERRA-2数据中提取的2018年12月15-20日(a)、21-26日(b)和2018年12月27日至2019年1月1日(c)准定常行星1波的EP通量(矢量)和EP通量散度(彩色阴影)的纬度–高度剖面

    Figure  5.  Latitude-height sections of EP flux (vectors) and EP flux divergence (color shading) for SPW1 for 15-20 (a), 21-26 (b) December, and 27 December 2018 to 1 January 2019 (c), extracted from MERRA-2 data

    图  6  从MERRA-2数据中提取的1996-1997年(a)和2018-2019年(b)70°N处的准定常行星2波的EP通量散度在各个高度上的逐日变化 (白色实线代表零刻度线, 黑色实线代表东向的纬向平均纬向风速, 而黑色虚线则代表西向的纬向平均纬向风速)

    Figure  6.  Daily variations of the EP flux divergence of the SPW2 at 70°N at various altitudes for the years 1996-1997 (a) and 2018-2019 (b) ,extracted from MERRA-2 data (The solid white line in the graph represents the zero line, the solid white line represents the eastward zonal-mean zonal winds, and the dashed white line represents the westward zonal-mean zonal winds)

    图  7  从MERRA-2数据中提取的2019年1月20-25日(a)、2月13-18日(b)和19-24日(c)准定常行星2波的EP通量(矢量)和EP通量散度的纬度-高度剖面

    Figure  7.  Latitude-height sections of EP flux (vectors) and EP flux divergence for SPW2 for 20-25 January (a), 13-18 February (b), and 19-24 February (c), 2019 extracted from MERRA-2 data

    图  8  从MERRA-2数据中提取的2018-2019年在80°N不同经度位置的时间平均纬向风的时间高度剖面

    Figure  8.  Time-height sections of time averaged zonal wind at 80°N and different longitude from 2018 to 2019, extracted from MERRA-2 data

  • [1] WAUGH D W, RANDEL W J. Climatology of arctic and antarctic polar vortices using elliptical diagnostics[J]. Journal of the Atmospheric Sciences, 1999, 56(11): 1594-1613 doi: 10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2
    [2] MANNEY G L, KRÜGER K, PAWSON S, et al. The evolution of the stratopause during the 2006 major warming: satellite data and assimilated meteorological analyses[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D11): D11115
    [3] MANNEY G L, SCHWARTZ M J, KRÜGER K, et al. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming[J]. Geophysical Research Letters, 2009, 36(12): L12815
    [4] DE LA TORRE L, GARCIA R R, BARRIOPEDRO D, et al. Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D4): D04110
    [5] FRANCE J A, HARVEY V L. A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2241-2254 doi: 10.1002/jgrd.50218
    [6] CHANDRAN A, COLLINS R L, GARCIA R R, et al. A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model[J]. Geophysical Research Letters, 2011, 38(8): L08804
    [7] CHANDRAN A, COLLINS R L, GARCIA R R, et al. A climatology of elevated stratopause events in the whole atmosphere community climate model[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(3): 1234-1246 doi: 10.1002/jgrd.50123
    [8] CHANDRAN A, GARCIA R R, COLLINS R L, et al. Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012[J]. Geophysical Research Letters, 2013, 40(9): 1861-1867 doi: 10.1002/grl.50373
    [9] HITCHCOCK P, SHEPHERD T G. Zonal-mean dynamics of extended recoveries from stratospheric sudden Warmings[J]. Journal of the Atmospheric Sciences, 2013, 70(2): 688-707 doi: 10.1175/JAS-D-12-0111.1
    [10] LIMPASUVAN V, ORSOLINI Y J, CHANDRAN A, et al. On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9): 4518-4537 doi: 10.1002/2015JD024401
    [11] ORSOLINI Y J, LIMPASUVAN V, PÉROT K, et al. Modelling the descent of nitric oxide during the elevated stratopause event of January 2013[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 155: 50-61 doi: 10.1016/j.jastp.2017.01.006
    [12] REN S Z, POLAVARAPU S, BEAGLEY S R, et al. The impact of gravity wave drag on mesospheric analyses of the 2006 stratospheric major warming[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D19): D19116 doi: 10.1029/2011JD015943
    [13] SISKIND D E, ECKERMANN S D, MCCORMACK J P, et al. Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D3): D00N03
    [14] YAMASHITA C, ENGLAND S L, IMMEL T J, et al. Gravity wave variations during elevated stratopause events using SABER observations[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5287-5303 doi: 10.1002/jgrd.50474
    [15] STRAY N H, ORSOLINI Y J, ESPY P J, et al. Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events[J]. Atmospheric Chemistry and Physics, 2015, 15(9): 4997-5005 doi: 10.5194/acp-15-4997-2015
    [16] ORSOLINI Y J, ZHANG J R, LIMPASUVAN V. Abrupt change in the lower thermospheric mean meridional circulation during sudden stratospheric warmings and its impact on trace species[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(20): e2022JD037050 doi: 10.1029/2022JD037050
    [17] SHEPHERD M G, MEEK C E, HOCKING W K, et al. Multi-instrument study of the mesosphere-lower thermosphere dynamics at 80°N during the major SSW in January 2019[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 210: 105427 doi: 10.1016/j.jastp.2020.105427
    [18] OKUI H, SATO K, KOSHIN D, et al. Formation of a mesospheric inversion layer and the subsequent elevated stratopause associated with the major stratospheric sudden warming in 2018/19[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(18): e2021JD034681 doi: 10.1029/2021JD034681
    [19] SCHEFFLER J, AYARZAGÜENA B, ORSOLINI Y J, et al. Elevated stratopause events in the current and a future climate: a chemistry-climate model study[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 227: 105804 doi: 10.1016/j.jastp.2021.105804
    [20] RHODES C T, LIMPASUVAN V, ORSOLINI Y. The composite response of traveling planetary waves in the middle atmosphere surrounding sudden stratospheric warmings through an overreflection perspective[J]. Journal of the Atmospheric Sciences, 2023, 80(11): 2635-2652 doi: 10.1175/JAS-D-22-0266.1
    [21] SISKIND D E, ECKERMANN S D, COY L, et al. On recent interannual variability of the Arctic winter mesosphere: implications for tracer descent[J]. Geophysical Research Letters, 2007, 34(9): L09806
    [22] THURAIRAJAH B, BAILEY S M, CULLENS C Y, et al. Gravity wave activity during recent stratospheric sudden warming events from SOFIE temperature measurements[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 8091-8103 doi: 10.1002/2014JD021763
    [23] TOMIKAWA Y, SATO K, WATANABE S, et al. Growth of planetary waves and the formation of an elevated stratopause after a major stratospheric sudden warming in a T213L256 GCM[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D16): D16101
    [24] WATANABE S, KAWATANI Y, TOMIKAWA Y, et al. General aspects of a T213L256 middle atmosphere general circulation model[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D12): D12110
    [25] SMITH A K. Longitudinal variations in mesospheric winds: evidence for gravity wave filtering by planetary waves[J]. Journal of the Atmospheric Sciences, 1996, 53(8): 1156-1173 doi: 10.1175/1520-0469(1996)053<1156:LVIMWE>2.0.CO;2
    [26] SMITH A K. The origin of stationary planetary waves in the upper mesosphere[J]. Journal of the Atmospheric Sciences, 2003, 60(24): 3033-3041 doi: 10.1175/1520-0469(2003)060<3033:TOOSPW>2.0.CO;2
    [27] LIEBERMAN R S, RIGGIN D M, SISKIND D E. Stationary waves in the wintertime mesosphere: evidence for gravity wave filtering by stratospheric planetary waves[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(8): 3139-3149 doi: 10.1002/jgrd.50319
    [28] SATO K, NOMOTO M. Gravity wave-induced anomalous potential vorticity gradient generating planetary waves in the winter mesosphere[J]. Journal of the Atmospheric Sciences, 2015, 72(9): 3609-3624 doi: 10.1175/JAS-D-15-0046.1
    [29] SATO K, YASUI R, MIYOSHI Y. The momentum budget in the stratosphere, mesosphere, and lower thermosphere. Part I: contributions of different wave types and in situ generation of Rossby waves[J]. Journal of the Atmospheric Sciences, 2018, 75(10): 3613-3633 doi: 10.1175/JAS-D-17-0336.1
    [30] RIENECKER M M, SUAREZ M J, GELARO R, et al. MERRA: NASA’s modern-era retrospective analysis for research and applications[J]. Journal of climate, 2011, 24(14): 3624-3648 doi: 10.1175/JCLI-D-11-00015.1
    [31] BOSILOVICH M G, LUCCHESI R, SUAREZ M. MERRA-2: file specification [R], 2015
    [32] LIVESEY N, READ W, WAGNER P, et al. EOS MLS Version 4.2 × Level 2 data quality and description document [J]. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2015, 15 : D-33509
    [33] PANCHEVA D, MUKHTAROV P, MITCHELL N J, et al. Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D12): D12105
    [34] ANDREWS D G, Holton J R, Leovy C B. Middle Atmosphere Dynamics[M]. Orlando: Academic Press, 1987
    [35] HARADA Y, HIROOKA T. Extraordinary features of the planetary wave propagation during the boreal winter 2013/2014 and the zonal wave number two predominance[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(21): 11,374-311,387
    [36] CHEN W, GRAF H F, TAKAHASHI M. Observed interannual oscillations of planetary wave forcing in the Northern Hemisphere winter[J]. Geophysical research letters, 2002, 29(22): 30-31-34-34
    [37] RODAS C, PULIDO M. A climatology of Rossby wave generation in the middle atmosphere of the Southern Hemisphere from MERRA reanalysis[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(17): 8982-8997 doi: 10.1002/2017JD026597
  • 加载中
图(8)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  97
  • PDF下载量:  28
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-04-16
  • 网络出版日期:  2024-06-20

目录

    /

    返回文章
    返回