Quasi-stationary Planetary Waves during the 2018–2019 Elevated Stratopause Event
-
摘要: 2018-2019年北半球高纬地区的冬季发生了平流层顶抬升事件, 各种大气波动在该事件中所扮演的角色尚不完全清楚. 利用卫星和再分析数据, 给出了在这次ES事件发生前后平流层顶和背景大气的变化, 深入研究了准定常行星波在平流层和中间层下部的活动. 结果显示, 纬向波数为1的准定常行星1波在12月初开始增强, 在12月中旬达到最大值. 在整个12月, 即原平流层顶的下降与增温阶段, 都呈现出对背景大气强烈的西向波强迫. 在平流层顶抬升事件发生后, 该波活动减弱, 对背景大气的拽力很弱, 可能没有参与平流层顶抬升事件的后续阶段. 纬向波数为2的准定常行星在ES事件发生前活动较弱, 而在1月中旬开始增强, 在1月中旬到2月末, 即高平流层顶形成阶段以及之后的下降与增温阶段, 呈现出对背景大气的西向波强迫, 强迫中心随高度的下降与高平流层顶的下降一致, 说明该波主要在这一阶段发挥作用.
-
关键词:
- 准定常行星波 /
- 平流层顶抬升 /
- 平流层 /
- MERRA-2再分析数据
Abstract: The winter of 2018-2019 at high latitudes in the Northern Hemisphere was characterized by an Elevated Stratospheric (ES) event, and the role played by various atmospheric fluctuations in this event is not fully understood. Using satellite and reanalysis data, the changes in the stratopause and background atmosphere before and after this ES event were demonstrated, providing insights into the activity of quasi-stationary planetary waves in the stratosphere and lower mesosphere. The results show that the quasi-stationary planetary waves with a zonal wave number of 1 began to intensify in early December and reached a maximum in mid-December. A strong westerly wave forcing on the background atmosphere is shown throughout December, the descending and warming phase of the original stratopause. After the ES, the wave activity weakened and the tug on the background atmosphere was weak, and may not have been involved in the subsequent phases of the ES event. The quasi-stationary planet with a zonal wave number of 2 has a weak activity before the ES, and starts to strengthen in mid-January, and shows westward wave forcing on the background atmosphere from the middle of January to the end of February, during the stage of the formation of the upper stratopause and the subsequent stages of the descent and warming, and the decrease of the center of the forcing with the altitude coincides with the decrease of the upper stratopause, which suggests that the wave mainly plays a role in this stage. -
图 2 从MERRA-2数据中提取的波数为1(左列)和波数为2(右列)的准定常行星波纬向风速、经向风速和温度分量在70°N处的高度–时间分布(红色实线代表平流层顶, 白色实线代表东向的纬向平均纬向风速, 而白色虚线则代表西向的纬向平均纬向风速)
Figure 2. Altitude-time distributions of SPW1 (left) and SPW2 (right) for zonal wind, meridional wind and temperature at 70°N, extracted from MERRA-2 data (The solid red line in the figure represents the stratopause, the solid white line represents the eastward zonal-mean zonal winds, and the dashed white line represents the westward zonal-mean zonal winds)
图 4 从MERRA-2数据中提取的2018年12月1日至2019年2月28日70°N处准定常行星波1的EP通量散度(白色实线代表零刻度线,黑色实线代表东向的纬向平均纬向风速, 黑色虚线则代表西向的纬向平均纬向风速)
Figure 4. EP flux divergence for SPW1 at 70°N from 1 December 2018 to 28 February 2019 extracted from MERRA-2 data (Solid white line in the graph represents the zero line, the solid white line represents the eastward zonal-mean zonal winds, and the dashed white line represents the westward zonal-mean zonal winds)
图 5 从MERRA-2数据中提取的2018年12月15-20日(a)、21-26日(b)和2018年12月27日至2019年1月1日(c)准定常行星1波的EP通量(矢量)和EP通量散度(彩色阴影)的纬度–高度剖面
Figure 5. Latitude-height sections of EP flux (vectors) and EP flux divergence (color shading) for SPW1 for 15-20 (a), 21-26 (b) December, and 27 December 2018 to 1 January 2019 (c), extracted from MERRA-2 data
图 6 从MERRA-2数据中提取的1996-1997年(a)和2018-2019年(b)70°N处的准定常行星2波的EP通量散度在各个高度上的逐日变化 (白色实线代表零刻度线, 黑色实线代表东向的纬向平均纬向风速, 而黑色虚线则代表西向的纬向平均纬向风速)
Figure 6. Daily variations of the EP flux divergence of the SPW2 at 70°N at various altitudes for the years 1996-1997 (a) and 2018-2019 (b) ,extracted from MERRA-2 data (The solid white line in the graph represents the zero line, the solid white line represents the eastward zonal-mean zonal winds, and the dashed white line represents the westward zonal-mean zonal winds)
-
[1] WAUGH D W, RANDEL W J. Climatology of arctic and antarctic polar vortices using elliptical diagnostics[J]. Journal of the Atmospheric Sciences, 1999, 56(11): 1594-1613 doi: 10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2 [2] MANNEY G L, KRÜGER K, PAWSON S, et al. The evolution of the stratopause during the 2006 major warming: satellite data and assimilated meteorological analyses[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D11): D11115 [3] MANNEY G L, SCHWARTZ M J, KRÜGER K, et al. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming[J]. Geophysical Research Letters, 2009, 36(12): L12815 [4] DE LA TORRE L, GARCIA R R, BARRIOPEDRO D, et al. Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D4): D04110 [5] FRANCE J A, HARVEY V L. A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2241-2254 doi: 10.1002/jgrd.50218 [6] CHANDRAN A, COLLINS R L, GARCIA R R, et al. A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model[J]. Geophysical Research Letters, 2011, 38(8): L08804 [7] CHANDRAN A, COLLINS R L, GARCIA R R, et al. A climatology of elevated stratopause events in the whole atmosphere community climate model[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(3): 1234-1246 doi: 10.1002/jgrd.50123 [8] CHANDRAN A, GARCIA R R, COLLINS R L, et al. Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012[J]. Geophysical Research Letters, 2013, 40(9): 1861-1867 doi: 10.1002/grl.50373 [9] HITCHCOCK P, SHEPHERD T G. Zonal-mean dynamics of extended recoveries from stratospheric sudden Warmings[J]. Journal of the Atmospheric Sciences, 2013, 70(2): 688-707 doi: 10.1175/JAS-D-12-0111.1 [10] LIMPASUVAN V, ORSOLINI Y J, CHANDRAN A, et al. On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9): 4518-4537 doi: 10.1002/2015JD024401 [11] ORSOLINI Y J, LIMPASUVAN V, PÉROT K, et al. Modelling the descent of nitric oxide during the elevated stratopause event of January 2013[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 155: 50-61 doi: 10.1016/j.jastp.2017.01.006 [12] REN S Z, POLAVARAPU S, BEAGLEY S R, et al. The impact of gravity wave drag on mesospheric analyses of the 2006 stratospheric major warming[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D19): D19116 doi: 10.1029/2011JD015943 [13] SISKIND D E, ECKERMANN S D, MCCORMACK J P, et al. Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D3): D00N03 [14] YAMASHITA C, ENGLAND S L, IMMEL T J, et al. Gravity wave variations during elevated stratopause events using SABER observations[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5287-5303 doi: 10.1002/jgrd.50474 [15] STRAY N H, ORSOLINI Y J, ESPY P J, et al. Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events[J]. Atmospheric Chemistry and Physics, 2015, 15(9): 4997-5005 doi: 10.5194/acp-15-4997-2015 [16] ORSOLINI Y J, ZHANG J R, LIMPASUVAN V. Abrupt change in the lower thermospheric mean meridional circulation during sudden stratospheric warmings and its impact on trace species[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(20): e2022JD037050 doi: 10.1029/2022JD037050 [17] SHEPHERD M G, MEEK C E, HOCKING W K, et al. Multi-instrument study of the mesosphere-lower thermosphere dynamics at 80°N during the major SSW in January 2019[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 210: 105427 doi: 10.1016/j.jastp.2020.105427 [18] OKUI H, SATO K, KOSHIN D, et al. Formation of a mesospheric inversion layer and the subsequent elevated stratopause associated with the major stratospheric sudden warming in 2018/19[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(18): e2021JD034681 doi: 10.1029/2021JD034681 [19] SCHEFFLER J, AYARZAGÜENA B, ORSOLINI Y J, et al. Elevated stratopause events in the current and a future climate: a chemistry-climate model study[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 227: 105804 doi: 10.1016/j.jastp.2021.105804 [20] RHODES C T, LIMPASUVAN V, ORSOLINI Y. The composite response of traveling planetary waves in the middle atmosphere surrounding sudden stratospheric warmings through an overreflection perspective[J]. Journal of the Atmospheric Sciences, 2023, 80(11): 2635-2652 doi: 10.1175/JAS-D-22-0266.1 [21] SISKIND D E, ECKERMANN S D, COY L, et al. On recent interannual variability of the Arctic winter mesosphere: implications for tracer descent[J]. Geophysical Research Letters, 2007, 34(9): L09806 [22] THURAIRAJAH B, BAILEY S M, CULLENS C Y, et al. Gravity wave activity during recent stratospheric sudden warming events from SOFIE temperature measurements[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 8091-8103 doi: 10.1002/2014JD021763 [23] TOMIKAWA Y, SATO K, WATANABE S, et al. Growth of planetary waves and the formation of an elevated stratopause after a major stratospheric sudden warming in a T213L256 GCM[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D16): D16101 [24] WATANABE S, KAWATANI Y, TOMIKAWA Y, et al. General aspects of a T213L256 middle atmosphere general circulation model[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D12): D12110 [25] SMITH A K. Longitudinal variations in mesospheric winds: evidence for gravity wave filtering by planetary waves[J]. Journal of the Atmospheric Sciences, 1996, 53(8): 1156-1173 doi: 10.1175/1520-0469(1996)053<1156:LVIMWE>2.0.CO;2 [26] SMITH A K. The origin of stationary planetary waves in the upper mesosphere[J]. Journal of the Atmospheric Sciences, 2003, 60(24): 3033-3041 doi: 10.1175/1520-0469(2003)060<3033:TOOSPW>2.0.CO;2 [27] LIEBERMAN R S, RIGGIN D M, SISKIND D E. Stationary waves in the wintertime mesosphere: evidence for gravity wave filtering by stratospheric planetary waves[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(8): 3139-3149 doi: 10.1002/jgrd.50319 [28] SATO K, NOMOTO M. Gravity wave-induced anomalous potential vorticity gradient generating planetary waves in the winter mesosphere[J]. Journal of the Atmospheric Sciences, 2015, 72(9): 3609-3624 doi: 10.1175/JAS-D-15-0046.1 [29] SATO K, YASUI R, MIYOSHI Y. The momentum budget in the stratosphere, mesosphere, and lower thermosphere. Part I: contributions of different wave types and in situ generation of Rossby waves[J]. Journal of the Atmospheric Sciences, 2018, 75(10): 3613-3633 doi: 10.1175/JAS-D-17-0336.1 [30] RIENECKER M M, SUAREZ M J, GELARO R, et al. MERRA: NASA’s modern-era retrospective analysis for research and applications[J]. Journal of climate, 2011, 24(14): 3624-3648 doi: 10.1175/JCLI-D-11-00015.1 [31] BOSILOVICH M G, LUCCHESI R, SUAREZ M. MERRA-2: file specification [R], 2015 [32] LIVESEY N, READ W, WAGNER P, et al. EOS MLS Version 4.2 × Level 2 data quality and description document [J]. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2015, 15 : D-33509 [33] PANCHEVA D, MUKHTAROV P, MITCHELL N J, et al. Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D12): D12105 [34] ANDREWS D G, Holton J R, Leovy C B. Middle Atmosphere Dynamics[M]. Orlando: Academic Press, 1987 [35] HARADA Y, HIROOKA T. Extraordinary features of the planetary wave propagation during the boreal winter 2013/2014 and the zonal wave number two predominance[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(21): 11,374-311,387 [36] CHEN W, GRAF H F, TAKAHASHI M. Observed interannual oscillations of planetary wave forcing in the Northern Hemisphere winter[J]. Geophysical research letters, 2002, 29(22): 30-31-34-34 [37] RODAS C, PULIDO M. A climatology of Rossby wave generation in the middle atmosphere of the Southern Hemisphere from MERRA reanalysis[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(17): 8982-8997 doi: 10.1002/2017JD026597 -
-