留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方向显著性特征分布的加权散度红外弱小目标增强检测

王怡雯 郑伟 邢成龙

王怡雯, 郑伟, 邢成龙. 方向显著性特征分布的加权散度红外弱小目标增强检测[J]. 空间科学学报, 2025, 45(1): 215-225. doi: 10.11728/cjss2025.01.2024-0025
引用本文: 王怡雯, 郑伟, 邢成龙. 方向显著性特征分布的加权散度红外弱小目标增强检测[J]. 空间科学学报, 2025, 45(1): 215-225. doi: 10.11728/cjss2025.01.2024-0025
WANG Yiwen, ZHENG Wei, XING Chenglong. Weighted Divergence of Directionally Salient Features for Infrared Small Target Detection Enhancement (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 215-225 doi: 10.11728/cjss2025.01.2024-0025
Citation: WANG Yiwen, ZHENG Wei, XING Chenglong. Weighted Divergence of Directionally Salient Features for Infrared Small Target Detection Enhancement (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 215-225 doi: 10.11728/cjss2025.01.2024-0025

方向显著性特征分布的加权散度红外弱小目标增强检测

doi: 10.11728/cjss2025.01.2024-0025 cstr: 32142.14.cjss.2024-0025
基金项目: 载人航天工程航天医学实验领域项目资助(HYZHXM01012)
详细信息
    作者简介:
    • 王怡雯 女, 出生于2002年, 河南工业大学电气工程学院在读本科生, 主要从事微弱信号处理等方面研究. E-mail: wangyiwen@stu.haut.edu.cn
    通讯作者:
    • 郑伟 男, 工学博士, 副研究员, 硕士生导师, 1996年于西北工业大学获得学士学位, 2001年于中国科学院西安光学精密机械研究所获得硕士学位, 2009年于中国科学院国家空间中心获得博士学位, 主要从事微弱信号处理、非线性信号处理与天基信息处理方面的研究. E-mail: zhengwei@nssc.ac.cn
    • 邢成龙 男, 现任职于河南工业大学电气工程学院控制工程系, 主要研究方向为流动控制与优化、机器学习和智能检测技术等. E-mail: chenglong.xing@haut.edu.cn
  • 中图分类号: TP391.4

Weighted Divergence of Directionally Salient Features for Infrared Small Target Detection Enhancement

  • 摘要: 红外弱小目标检测广泛应用于暗弱天体检测等领域, 是空间环境安全预警的重要手段. 基于熵的理论并结合目标扩散的方向性, 提出了一种方向显著性特征分布的加权散度红外弱小目标增强检测方法(DSWD). 在多层嵌套窗口中评估图像局部显著性, 基于点目标在红外图像中由中心向八个方向扩展的特征对图像进行多向空间滤波, 在复杂背景中增强目标. 鉴于显著性特征各向分布与平均背景分布之间的差异, 使用散度将目标区域与背景之间概率分布量化, 推断区域内感兴趣的部分. 为解决复杂背景中存在的高亮背景等混淆元素会对目标提取造成干扰的问题, 进一步采用改进的绝对均方差方法增强目标, 确保从复杂背景中准确分离出目标, 进而采用自适应阈值处理方法提取目标. 实验结果表明, 针对多变空间环境, 所提出的方法能够在空间环境中准确检测出弱小目标, 降低虚警率, 为未来空间环境安全预警系统提供参考.

     

  • 图  1  算法流程

    Figure  1.  Algorithm flow chart

    图  2  点目标扩散

    Figure  2.  Spread of point targets

    图  3  多向滤波核

    Figure  3.  Multidirectional spatial filtering kernel

    图  4  散度计算窗口

    Figure  4.  Divergence calculation window

    图  5  内部窗口和外部窗口

    Figure  5.  Internal and external windows

    图  6  不同算法在不同序列下的红外弱小目标图像检测结果

    Figure  6.  Infrared small target image detection results under different sequences

    图  7  利用不同算法在四组序列下的ROC曲线

    Figure  7.  ROC curves of different algorithms under four sets of sequences

    表  1  四组序列详细信息

    Table  1.   Four sets of sequence details

    序列帧数平均SCRSCR
    方差
    场景说明
    序列13996.070.16由远及近、单个目标、地面背景
    序列215005.202.23日标由远及近、单个目标、目标中途机动、地面背景
    序列37513.420.97单个目标、目标机动、地面背景
    序列45002.200.15目标由远及近、单个目标、地面背景
    下载: 导出CSV

    表  2  利用不同算法在四组序列下计算的FSCRG

    Table  2.   FSCRG values calculated by different algorithms under four sets of sequences

    序列DSWDWSLCMTLLCMPSTNNMPCMLGDCADMD
    序列126.958863.3898532.410657.0607632.1323925.0777330.289776
    序列229.084033.1143484.140427.5358660.890891.6594680.087604
    序列34.3421241.8454833.60713.4437290.5497830.3748160.038264
    序列486.616481.8186130.97013822.274471.6767134.8452570.288661
    下载: 导出CSV

    表  3  利用不同算法在四组序列下计算的FBSF

    Table  3.   FBSF values calculated by different algorithms under four sets of sequences

    序列DSWDWSLCMTLLCMPSTNNMPCMLGDCADMD
    序列114.252658.3445996.0719863.5974273.5782785.1406393.99592
    序列211.286585.6992013.8984662.6580142.1135833.5411013.420808
    序列314.269269.9065237.1953433.4412764.48579810.695227.449242
    序列441.46721.0405713.694410.567037.35009312.6898.624328
    下载: 导出CSV

    表  4  单帧算法的平均运行效率

    Table  4.   Average operational efficiency of single-frame algorithms

    算法DSWDWSLCMTLLCMPSTNNMPCMLGDCADMD
    运行效率0.0755092.2434010.5554000.4680050.1121411.1879460.066555
    下载: 导出CSV
  • [1] 牛海鹏. 天基空间监视系统目标检测技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023

    NIU Haipeng. Research on Target Detection Technology of Space-Based Space Surveillance System[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2023
    [2] KONG X, YANG C P, CAO S Y, et al. Infrared small target detection via nonconvex tensor fibered rank approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5000321
    [3] ZHANG K, LI X G. Infrared small dim target detection based on region proposal[J]. Optik, 2019, 182: 961-973 doi: 10.1016/j.ijleo.2019.02.008
    [4] LU R T, YANG X G, JING X, et al. Infrared small target detection based on local hypergraph dissimilarity measure[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7000405
    [5] LU S, CHEN P F, WOŹNIAK M. Image enhancement-based detection with small infrared targets[J]. Remote Sensing, 2022, 14(13): 3232 doi: 10.3390/rs14133232
    [6] LIU C, XIE F Y, ZHANG H P, et al. Infrared small target detection based on multi-perception of target features[J]. Infrared Physics & Technology, 2023, 135: 104927
    [7] 凡遵林, 王浩, 管乃洋, 等. 单帧红外图像弱小目标检测研究综述[J]. 红外技术, 2023, 45(11): 1133-1140

    FAN Zunlin, WANG Hao, GUAN Naiyang, et al. Review of dim small target detection research in single infrared image[J]. Infrared Technology, 2023, 45(11): 1133-1140
    [8] 孙熊伟. 复杂背景下海面红外小目标快速检测技术研究[D]. 合肥: 中国科学技术大学, 2019

    SUN Xiongwei. Research on the Rapid Detection of infrared Small Targets under Complex Marine Backgrounds[D]. Hefei: University of Science and Technology of China, 2019
    [9] 杜鹏. 复杂背景条件下红外弱小目标检测关键技术研究[D]. 乌鲁木齐: 新疆大学, 2020

    DU Peng. Research on Key Technology of Infrared Detection of Dim and Small Target Under Complex Background Conditions[D]. Urumqi: Xinjiang University, 2020
    [10] 刘征, 杨德振, 李江勇, 等. 红外单帧弱小目标检测算法研究综述[J]. 激光与红外, 2022, 52(2): 154-162 doi: 10.3969/j.issn.1001-5078.2022.02.002

    LIU Zheng, YANG Dezhen, LI Jiangyong, et al. A review of infrared single-frame dim small target detection algorithms[J]. Laser & Infrared, 2022, 52(2): 154-162 doi: 10.3969/j.issn.1001-5078.2022.02.002
    [11] 马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 47-63

    MA Liang, GUO Yutao, LEI Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electronic Engineering, 2022, 49(4): 47-63
    [12] 杨本臣, 宋婉妮, 金海波, 等. 梯度差各向异性高斯滤波的红外小目标检测[J]. 激光与光电子学进展, 2023, 60(16): 1612003

    YANG Benchen, SONG Wanni, JIN Haibo, et al. Infrared small target detection using gradient differential anisotropic Gaussian filtering[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1612003
    [13] 穆靖, 李伟华, 饶俊民, 等. 采用三层模板局部差异度量的红外弱小目标检测[J]. 光学 精密工程, 2022, 30(7): 869-882 doi: 10.37188/OPE.20223007.0869

    MU Jing, LI Weihua, RAO Junmin, et al. Infrared small target detection using tri-layer template local difference measure[J]. Optics and Precision Engineering, 2022, 30(7): 869-882 doi: 10.37188/OPE.20223007.0869
    [14] 饶俊民, 穆靖, 刘士建, 等. 基于聚类思想的红外弱小目标检测[J]. 红外与毫米波学报, 2023, 42(4): 527-537 doi: 10.11972/j.issn.1001-9014.2023.04.015

    RAO Junmin, MU Jing, LIU Shijian, et al. Infrared small target detection based on clustering idea[J]. Journal of Infrared and Millimeter Waves, 2023, 42(4): 527-537 doi: 10.11972/j.issn.1001-9014.2023.04.015
    [15] HAN Jinhui , MA Yong, HUANG Jun, et al. An infrared small target detecting algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 13 (3): 452-456
    [16] 薛锡瑞, 黄树彩, 马佳顺, 等. 基于局部熵参考预处理的RPCA红外小目标检测[J]. 红外技术, 2021, 43(7): 649-657

    XUE Xirui, HUANG Shucai, MA Jiashun, et al. RPCA infrared small target detection based on local entropy reference in preprocessing[J]. Infrared Technology, 2021, 43(7): 649-657
    [17] 孙国栋, 吉书鹏, 周桢. 小波域自适应滤波的红外弱小目标检测[J]. 航空兵器, 2011(3): 20-23 doi: 10.3969/j.issn.1673-5048.2011.03.006

    SUN Guodong, JI Shupeng, ZHOU Zhen. Dim small IR target detection based on the wavelet domain adaptive filtering[J]. Aero Weaponry, 2011(3): 20-23 doi: 10.3969/j.issn.1673-5048.2011.03.006
    [18] 赵骞, 韩金辉, 徐茂, 等. 基于局部对比度背景估计的红外小目标检测方法[J]. 智能系统学报, 2022, 17(2): 314-324 doi: 10.11992/tis.202101009

    ZHAO Qian, HAN Jinhui, XU Mao, et al. Infrared small-target detection utilizing background estimation combined with local contrast[J]. CAAI Transactions on Intelligent Systems, 2022, 17(2): 314-324 doi: 10.11992/tis.202101009
    [19] HU J, YU Y, LIU F. Small and dim target detection by background estimation[J]. Infrared Physics & Technology, 2015, 73: 141-148
    [20] CHEN C L P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581 doi: 10.1109/TGRS.2013.2242477
    [21] HAN J H, MORADI S, FARAMARZI I, et al. Infrared small target detection based on the weighted strengthened local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(9): 1670-1674 doi: 10.1109/LGRS.2020.3004978
    [22] SUN Y, YANG J G, AN W. Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 3737-3752 doi: 10.1109/TGRS.2020.3022069
    [23] LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2023, 32: 1745-1758 doi: 10.1109/TIP.2022.3199107
    [24] 聂青凤, 刘应杰, 梁赟. 基于稀疏约束神经网络的红外弱小目标检测技术[J]. 电光与控制, 2022, 29(8): 40-44 doi: 10.3969/j.issn.1671-637X.2022.08.008

    NIE Qingfeng, LIU Yingjie, LIANG Yun. Infrared dim target detection based on neural network model with sparsity constraint[J]. Electronics Optics & Control, 2022, 29(8): 40-44 doi: 10.3969/j.issn.1671-637X.2022.08.008
    [25] LIU F C, GAO C Q, CHEN F, et al. Infrared small-dim target detection with transformer under complex backgrounds[OL]. arXiv preprint arXiv: 2109.14379, 2021
    [26] 韩金辉, 魏艳涛, 彭真明, 等. 红外弱小目标检测方法综述[J]. 红外与激光工程, 2022, 51(4): 20210393 doi: 10.3788/IRLA20210393

    HAN Jinhui, WEI Yantao, PENG Zhenming, et al. Infrared dim and small target detection: a review[J]. Infrared and Laser Engineering, 2022, 51(4): 20210393 doi: 10.3788/IRLA20210393
    [27] MORADI S, MOALLEM P, SABAHI F M. Fast and robust small infrared target detection using absolute directional mean difference algorithm[J]. Signal Processing, 2020, 177: 107727 doi: 10.1016/j.sigpro.2020.107727
    [28] HAN J H, MORADI S, FARAMARZI I, et al. A local contrast method for infrared small-target detection utilizing a tri-layer window[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1822-1826 doi: 10.1109/LGRS.2019.2954578
    [29] ZHANG L D, PENG Z M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382 doi: 10.3390/rs11040382
    [30] WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226 doi: 10.1016/j.patcog.2016.04.002
    [31] WAN M J, XU Y K, HUANG Q Y, et al. Single frame infrared small target detection based on local gradient and directional curvature[C]//Proceedings of SPIE 11897, Optoelectronic Imaging and Multimedia Technology VIII. Nantong: SPIE, 2021: 99-107
    [32] 回丙伟, 宋志勇, 范红旗, 等. 地/空背景下红外图像弱小飞机目标检测跟踪数据集[J]. 中国科学数据, 2020, 5(3): 286-297

    HUI Bingwei, SONG Zhiyong, FAN Hongqi, et al. A dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background[J]. China Scientific Data, 2020, 5(3): 286-297
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  100
  • PDF下载量:  35
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-02-20
  • 修回日期:  2024-03-21
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回