Preliminary Analysis of Observation Data by High Frequency Radars of the CN-DARN
-
摘要: 中国双极光雷达网(CN-DARN)分别在内蒙古自治区四子王旗、吉林省龙井市和新疆维吾尔自治区巴音郭楞蒙古自治州和静县布设了3站6部高频相干散射雷达. 四子王旗东雷达(SZE)、四子王旗西雷达(SZW)、龙井东雷达(LJE)、龙井西雷达(LJW)、和静东雷达(HJE)以及和静西雷达(HJW). 按照雷达站建设的时间线, 依次给出了各雷达在地磁平静期和磁暴期的观测结果, 并将雷达观测结果与国际上其他SuperDARN雷达, 例如佳木斯雷达(JME)、北海道雷达(HOK)等数据进行对比分析. 进一步, 利用磁暴期间全部北半球SuperDARN雷达观测数据获取北半球电离层对流图, 分析结果表明CN-DARN观测的等离子体对流符合磁暴期间电离层对流典型特征. 分析证实了CN-DARN高频雷达数据的有效性, 为后续中纬高频雷达数据的科学产出奠定了基础.Abstract: China Dual Auroral Radar Network (CN-DARN) has established three stations and six high-frequency coherent scatter radars in Siziwang, Inner Mongolia Longjing Jilin, and Hejing Xinjiang. This paper utilizes the wide-area high-precision ionospheric irregularities autonomous detection data produced by the six mid-latitude high-frequency coherent scatter radars: Siziwang East Radar (SZE), Siziwang West Radar (SZW), Longjing East Radar (LJE), Longjing West Radar (LJW), Hejing East Radar (HJE), and Hejing West Radar (HJW). According to the time line of the construction of the radar station, the observation results of each radar in the geomagnetic quiet period and geomagnetic storm period are presented in this paper. Then we compared the data of the six high-frequency radars with other international SuperDARN radars (such as Jiamusi Radar, JME; Hokkaido Radars, HOK, etc.). Further, the ionospheric convection map of the northern hemisphere was obtained by using all the SuperDARN radar data observed during the magnetic storm. The analysis results show that the plasma convection observed by six high frequency radars in the northern mid-latitude of the CN-DARN is consistent with the typical characteristics of ionospheric convection during the magnetic storm. The analysis in this paper confirms the validity of the mid-latitude HF radar data of the CN-DARN, and lays a foundation for the scientific output of the subsequent mid-latitude high frequency radar data.
-
表 1 CN-DARN六部雷达台站地理位置
Table 1. Six radars parameters of CN-DARN
雷达名称 雷达代码 地理纬度/(º) 地理经度/(º) 海拔高度/m 地磁纬度/(º) 地磁经度/(º) 磁地方时(MLT) 雷达法向 龙井东 LJE 42.8 129.4 323.1 37.0 –156.4 8.3 44.0 龙井西 LJW 42.8 129.4 333.7 37.0 –156.4 8.3 –34.0 四子王旗东 SZE 41.8 111.9 1445.9 37.2 –173.9 7.2 42.0 四子王旗西 SZW 41.8 111.9 1444.7 37.2 –173.9 7.2 –36.0 和静东 HJE 42.6 83.7 2820.5 38.8 157.1 5.2 39.0 和静西 HJW 42.6 83.7 2820.5 38.8 157.1 5.2 –39.0 注 地磁坐标为2022年1月1日00:00 UT时各台站AACGM坐标. -
[1] CHISHAM G, LESTER M, MILAN S E, et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions[J]. Surveys in Geophysics, 2007, 28(1): 33-109 doi: 10.1007/s10712-007-9017-8 [2] NISHITANI N, RUOHONIEMI J M, LESTER M, et al. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars[J]. Progress in Earth and Planetary Science, 2019, 6(1): 27 doi: 10.1186/s40645-019-0270-5 [3] 张佼佼, 蓝爱兰. 基于高频相干散射雷达网的中纬度 电离层动力学过程研究[J]. 中国基础科学·前沿研究, 2023, 25(3): 36-43ZHANG Jiaojiao, LAN Ailan. Research of the dynamics of the middle latitude ionosphere based on high-frequency coherent scattering radar network[J]. China Basic Science, 2023, 25(3): 36-43 [4] WANG Chi, XU Jiyao, LIU Libo, et al. Contribution of the Chinese Meridian Project to space environment research: Highlights and perspectives[J]. Science China Earth Sciences, 2023, 66(7): 1423-1438. (王赤, 徐寄遥, 刘立波, 等. 国家重大科技基础设施子午工程在空间环境领域的亮点研究进展[J]. 中国科学: 地球科学, 2023, 53(7): 1433-1449. DOI: 10.1360/N072022-0137 [5] HIYADUTUJE A, KOSCH M J, STEPHENSON J A E. First observations of E-region Near Range Echoes partially modulated by F-region Traveling Ionospheric Disturbances observed by the same SuperDARN HF radar[J]. Journal of Geophysical Research: Space Physics, 2022, 127(5): e2021JA030157. doi: 10.1029/2021JA030157 [6] ZHANG J J, WANG W, WANG C, et al. First observation of ionospheric convection from the Jiamusi HF radar during a strong geomagnetic storm[J]. Earth and Space Science, 2020, 7(1): e2019EA000911 doi: 10.1029/2019EA000911 [7] RUOHONIEMI J M, BAKER K B. Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A9): 20797-20811 doi: 10.1029/98JA01288 [8] SHEPHERD S G, RUOHONIEMI J M. Electrostatic potential patterns in the high-latitude ionosphere constrained by SuperDARN measurements[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A10): 23005-23014 doi: 10.1029/2000JA000171 [9] THOMAS E G, SHEPHERD S G. Statistical patterns of ionospheric convection derived from mid-latitude, high-latitude, and polar SuperDARN HF radar observations[J]. Journal of Geophysical Research: Space Physics, 2018, 123(4): 3196-3216 [10] (王劲松, 肖佐. 中纬电离层暴负相开始时间与磁暴主相开始时间的对应关系[J]. 空间科学学报, 1994, 14(3): 191-197 doi: 10.11728/cjss1994.03.191WANG Jingsong, XIAO Zuo. The relation between the onset times of the negative phase of ionospheric storms and the main phase of magnetic storms at middle latitudes[J]. Chinese Journal of Space Science, 1994, 14(3): 191-197 doi: 10.11728/cjss1994.03.191 [11] PETTIGREW E D, SHEPHERD S G, RUOHONIEMI J M. Climatological patterns of high-latitude convection in the northern and southern hemispheres: Dipole tilt dependencies and interhemispheric comparisons[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A7): A07305 doi: 10.1029/2009JA014956 -
-
李航 男, 1999年3月出生于内蒙古包头市, 现为中国科学院国家空间科学中心博士研究生, 主要研究方向为电离层扰动、电离层不规则体等. E-mail:
下载: