留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毅力号火星车矿物探测与样品采集进展(2021-2024年)

黄文博 曹海军 辛艳青 曾小家 陈剑 刘平 苏鸣宇 张睿泽 曲洪坤 石二彬 刘长卿 许学森 凌宗成 吴兴

黄文博, 曹海军, 辛艳青, 曾小家, 陈剑, 刘平, 苏鸣宇, 张睿泽, 曲洪坤, 石二彬, 刘长卿, 许学森, 凌宗成, 吴兴. 毅力号火星车矿物探测与样品采集进展(2021-2024年)[J]. 空间科学学报, 2025, 45(2): 288-309. doi: 10.11728/cjss2025.02.2024-0119
引用本文: 黄文博, 曹海军, 辛艳青, 曾小家, 陈剑, 刘平, 苏鸣宇, 张睿泽, 曲洪坤, 石二彬, 刘长卿, 许学森, 凌宗成, 吴兴. 毅力号火星车矿物探测与样品采集进展(2021-2024年)[J]. 空间科学学报, 2025, 45(2): 288-309. doi: 10.11728/cjss2025.02.2024-0119
HUANG Wenbo, CAO Haijun, XIN Yanqing, ZENG Xiaojia, CHEN Jian, LIU Ping, SU Mingyu, ZHANG Ruize, QU Hongkun, SHI Erbin, LIU Changqing, XU Xuesen, LING Zongcheng, WU Xing. Progress in Mineral Exploration and Sample Collection by Perseverance Rover on Mars (2021-2024) (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 288-309 doi: 10.11728/cjss2025.02.2024-0119
Citation: HUANG Wenbo, CAO Haijun, XIN Yanqing, ZENG Xiaojia, CHEN Jian, LIU Ping, SU Mingyu, ZHANG Ruize, QU Hongkun, SHI Erbin, LIU Changqing, XU Xuesen, LING Zongcheng, WU Xing. Progress in Mineral Exploration and Sample Collection by Perseverance Rover on Mars (2021-2024) (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 288-309 doi: 10.11728/cjss2025.02.2024-0119

毅力号火星车矿物探测与样品采集进展(2021-2024年)

doi: 10.11728/cjss2025.02.2024-0119 cstr: 32142.14.cjss.2024-0119
基金项目: 国家资助博士后研究人员计划项目(GZC20231431), 国家重点研发计划项目(2022YFF0711400), 中国科学院战略性先导科技专项(XDB 41000000), 国家自然科学基金项目(42430204, 42372277, 42404186)和山东省自然科学基金项目(ZR2021QD044)共同资助
详细信息
    作者简介:
    • 黄文博 男, 2004年2月出生于山东省青岛市, 现为山东大学澳国立联合理学院本科生, 主要研究方向为行星光谱学, 研究领域包括火星表面物质成分反演研究, 火星次生矿物及蚀变过程研究. E-mail: 2080466358@qq.com
    通讯作者:
    • 辛艳青 男, 1984年2月出生于山东省潍坊市, 现为山东大学空间科学与技术学院实验师, 硕士生导师, 研究方向为行星光谱学, 研究领域为行星表面物质及演化, 物质分析方法研究. E-mail: yqxin@sdu.edu.cn
  • 中图分类号: P185.3

Progress in Mineral Exploration and Sample Collection by Perseverance Rover on Mars (2021-2024)

  • 摘要: 美国NASA毅力号 (Perseverance) 火星车于2021年2月18日在杰泽罗 (Jezero) 撞击坑 (18.4°N, 77.7°E) 成功着陆, 目前已运行近4年, 取得了丰富的科学发现和研究成果. 毅力号搭载的四台光谱载荷 (SuperCam, Mastcam-Z, SHERLOC, PIXL) 为探测杰泽罗撞击坑表面物质成分和潜在的生命遗迹提供了丰富的数据, 有助于深入认识火星的物质成分、岩石成因及区域地质演化历史等. 本文系统综述了毅力号的科学探测进展, 重点介绍了其搭载的光谱载荷及在杰泽罗撞击坑内四个科学探索阶段 (包括撞击坑坑底、沉积扇边缘、沉积扇上部和撞击坑边缘) 的矿物探测进展, 并分析了毅力号火星车采集的不同类型样品组成特征及其潜在的科学价值. 研究结果可为中国天问三号火星探测和采样返回任务提供重要的科学参考.

     

  • 图  1  火星表面含水矿物的全球分布. 五角星为已有火星着陆点位置

    Figure  1.  Global distribution of the aqueous minerals on Mars with existing landing sites marked by pentagons

    图  2  杰泽罗撞击坑的形貌与单元分类. (a) 高程图, 典型地质单元被标记, 白框代表 (b) 中的沉积扇单元; (b) 西部沉积扇单元的地质状况; (c) CRISM绘制的矿物分布

    Figure  2.  Topography and unit classification of Jezero crater. (a) Elevation map with typical geological units marked, the white box represents the delta shown in (b); (b) geological map of the delta (west); (c) mineral distribution map derived from CRISM

    图  3  毅力号火星车及相关科学载荷. (a) 毅力号主体和机智号, (b) 毅力号机械臂和钻磨坑

    Figure  3.  Perseverance rover and associated scientific payloads. (a) Perseverance rover and Ingenuity helicopter, (b) Perseverance’s robotic arm and abraded patch

    图  4  毅力号火星车的标准研究方案及取样和钻磨路径

    Figure  4.  Standardized observation protocol and sampling sol path of Perseverance rover

    图  5  毅力号行驶路线. 橙色、绿色、蓝色、紫色点代表不同探索阶段毅力号的工作区位置

    Figure  5.  Perseverance rover’s traverse path, with orange, green, blue, and purple dots representing the workspaces during different scientific campaigns

    图  6  撞击坑坑底探索阶段. (a) 毅力号在撞击坑坑底的行进路线, 橙色点代表工作区位置; (b) Máaz, Séítah和Artuby Ridge的地层截面; (c) SuperCam探测结果绘制的元素组成变化趋势

    Figure  6.  Crater floor campaign. (a) Perseverance rover’s traverse path on the crater floor, with orange dots representing workspace locations; (b) stratigraphic cross-section of Máaz, Séítah, and Artuby Ridge; (c) elemental composition trends from SuperCam detection results

    图  7  Séítah单元的钻磨坑的PIXL探测结果. (a) Dourbes钻磨坑及PIXL扫描区域; (b) 矿物分类三元图, 标注了主要 (星形) 和次要 (六边形) 矿物端元. 其中绿色为衍射点, 黑色为非衍射点; (c) 矿物分布

    Figure  7.  PIXL detection results of abraded patch in Séítah. (a) Dourbes and PIXL scan area; (b) ternary diagram of mineral classification, with primary (star) and secondary (hexagon) mineral end-members marked, and green and black points indicate diffraction and non-diffraction, respectively; (c) mineral distribution

    图  8  Máaz或Séítah单元的钻磨坑和岩石表面的可见近红外和拉曼光谱. (a) 钻磨坑的可见近红外光谱, (b) 标准矿物的可见近红外光谱, (c) Bellegarde钻磨坑中识别到的高氯酸钠拉曼光谱

    Figure  8.  Visible-near infrared and Raman spectra of abraded patches and rock surfaces in Máaz or Séítah. (a) Visible-near infrared spectrum of abraded patches, (b) visible-near infrared spectrum of standard minerals, (c) Raman spectrum of Na-perchlorate identified in Bellegarde

    图  9  毅力号在沉积扇边缘的行进路线. 绿色点代表工作区位置

    Figure  9.  Perseverance rover’s traverse path on the delta front. Green dots represent the workspace locations

    图  10  沉积扇边缘的钻磨坑 (红色) 和采样位置 (蓝色)

    Figure  10.  Abraded patches (red) and sampling locations (blue) on the delta front

    图  11  Yori Pass的钻磨坑 (Uganik Island). (a) 浅色矿脉, 白色箭头标注; (b) 等粒胶结物, 蓝色箭头标注; (c) 内碎屑; (d) 鱼形的层状斑块, 绿色箭头标注; (e) 两个硫酸钙脉, 红色箭头指向第一代矿脉, 虚线白色箭头指向二期改造矿脉

    Figure  11.  Abraded patch at Yori Pass (Uganik Island). (a) Light-colored vein, marked by a white arrow; (b) equigranular cement, marked by a blue arrow; (c) intraclasts identified; (d) fish-shaped laminated patch, marked by a green arrow; (e) two Ca-sulfate veins, with the red arrow pointing to the first-generation of cement and the dashed white arrow pointing to the second generation of vein-filling cement

    图  12  毅力号在沉积扇上部的行进路线. 蓝色点代表工作区位置

    Figure  12.  Perseverance rover’s traverse path in the upper fan, with blue dots representing the workspace locations

    图  13  沉积扇上部的钻磨坑 (红色) 和采样位置 (蓝色)

    Figure  13.  Abraded patches (red) and sampling locations (blue) on the upper fan

    图  14  沉积扇边缘 (第一行) 和沉积扇上部 (第二行) 钻磨坑的多光谱图. (a)~(c) 在Hawksbill Gap; (d)~(e) 在Cape Nukshak; (f)~(j) 分别在Tenby, Echo Creek, Powell Peak, Dream Lake 和 Willow Park

    Figure  14.  Multispectral images of abraded patches at the delta front (first row) and the upper fan (second row). (a)~(c) at Hawksbill Gap; (d)~(e) at Cape Nukshak; (f)~(j) at Tenby, Echo Creek, Powell Peak, Dream Lake, and Willow Park, respectively

    图  15  毅力号在撞击坑边缘的行进路线. 紫色点代表工作区位置

    Figure  15.  Perseverance rover’s traverse path on the margin unit. Purple dots represent the workspace locations

    表  1  毅力号火星车的光谱载荷与样品收集载荷

    Table  1.   Spectrometric and sample collection payloads of Perseverance rover

    载荷类型 载荷名称 主要技术应用 主要技术指标 光谱/图像分辨率
    远程探测光谱仪  超级相机 (SuperCam)[36,37]  激光诱导击穿光谱 (LIBS) 激发源: Nd-YAG
    激光波长: 1064 nm
    激光能量: >24 mJ
    光斑直径: 250~450 μm
    光谱范围: 244~853 nm
    探测距离: 2~7 m
    0.12 nm@244~342
    0.12 nm@382~468
    0.35 nm/11 cm–1
    @535~620
    <0.65 nm@620~712
    <0.75 nm@712~853
     时间分辨拉曼和时间分辨荧光光谱 (TRR, TRL) 激发源: Nd-YAG
    激光波长: 532 nm
    激光能量: >9 mJ
    光谱范围: 150~4400 cm–1
    探测距离: 2~7 m
    <12 cm–1
     可见近红外反射光谱仪 (VISIR) 可见光: 透射和蓝紫色光谱仪
    光谱范围: 0.39~0.85 μm
    探测距离: 2 m~∞
    0.15~0.65 nm
    近红外: 声光可调滤光光谱仪
    光谱范围: 1.3~2.6 μm
    探测距离: 2 m~∞
    <32 cm–1
     远程显微成像仪 (RMI) 红/绿/蓝图像
    探测距离: 2 m~∞
    <80 μrad
     桅杆变焦相机 (Mastcam-Z)[38]  多光谱立体成像 宽带红/绿/蓝图像
    窄带可见–近红外图像
    光谱范围: 400~1000 nm
    探测距离: 0.5 m~∞
    宽带: 283 µrad
    窄带: 67.4 µrad
    近程探测
    光谱仪
     扫描适居环境的
    拉曼和荧光有机物
    与化学物质仪 (SHERLOC)[39,40]
     拉曼光谱仪和荧光
    光谱仪 (Raman, Fluorescence)
    激发源: 深紫外氖–铜激光
    激光波长: 248.6 nm
    激光能量: >14 μJ
    光斑直径: 110 μm
    拉曼光谱范围:
     800~4000 cm–1
    荧光光谱范围: 275~354 nm
    探测距离: 48 mm
    <0.269 nm
     自动对焦环境成像仪 (ACI) 探测距离: 48 mm 10.1 μm·pixel–1
     用于操作和工程的广角地形传感器 (WATSON) 探测距离: 17.8 mm~∞ 13.1 μm·pixel–1
     X射线行星岩石
    分析仪 (PIXL)[41]
     X射线荧光
    光谱 (XRF)
    激发源: 铑阳极X射线
    激发能量: 28 keV
    X射线束斑直径: 120 μm
    探测距离: 30 mm
    160 eV FWHM@5.9 keV
     微观环境相机 (MCC) 探测距离: 25.5 mm 70 µm·pixel–1
    样品收集
    载荷
     样品采集与储存
    系统 (SCS)[42]
    机械臂 长度: 2.2 m
    转台 质量: 40.1 kg
    直径: 75 cm
    钻头 直径: 13 mm
    长度: 70 mm
    冲击频率: 23~40 Hz
    自适应储存组件 (ACA) 容纳样本管数: 43
    下载: 导出CSV

    表  2  毅力号采集的样品总览

    Table  2.   Overview of samples collected by Perseverance rover

    序号 日期 火星日 样品名称 采集位置 当前位置 样品类型 样品长度/cm 岩石类型
    1 2021–08–06 164 Roubion Séítah北部 Three Forks 大气
    2 2021–09–06 194 Montdenier Artuby Ridge Three Forks 岩芯 3.63 火成岩
    3 2021–09–08 196 Montagnac Artuby Ridge 毅力号 岩芯 3.72 火成岩
    4 2021–11–15 262 Salette Séítah南部 毅力号 岩芯 3.81 火成岩
    5 2021–11–24 271 Coulettes Séítah南部 Three Forks 岩芯 2.00 火成岩
    6 2021–12–22 298 Robine Séítah南部 毅力号 岩芯 3.69 火成岩
    7 2022–01–31 337 Malay Séítah南部 Three Forks 岩芯 1.86 火成岩
    8 2022–03–07 371 Ha'ahóni Octavia E. Butler 毅力号 岩芯 3.94 火成岩
    9 2022–03–13 377 Atsá Octavia E. Butler Three Forks 岩芯 3.64 火成岩
    10 2022–07–07 490 Swift Run 沉积扇边缘 毅力号 岩芯 4.06 沉积岩
    11 2022–07–12 495 Skyland 沉积扇边缘 Three Forks 岩芯 3.55 沉积岩
    12 2022–07–27 509 Hazeltop 沉积扇边缘 毅力号 岩芯 3.62 沉积岩
    13 2022–08–03 516 Bearwallow 沉积扇边缘 Three Forks 岩芯 3.78 沉积岩
    14 2022–10–02 575 Shuyak 沉积扇边缘 毅力号 岩芯 3.36 沉积岩
    15 2022–11–16 619 Mageik 沉积扇边缘 Three Forks 岩芯 4.46 沉积岩
    16 2022–11–29 631 Kukaklek 沉积扇边缘 毅力号 岩芯 3.01 沉积岩
    17 2022–12–02 634 Atmo Mountain 沉积扇边缘 毅力号 风化层 3.21 沉积岩和火成岩
    18 2022–12–07 639 Crosswind Lake 沉积扇边缘 Three Forks 风化层 3.21 沉积岩和火成岩
    19 2023–03–30 749 Melyn 沉积扇上部 毅力号 岩芯 3.66 沉积岩
    20 2023–06–23 832 Otis Peak 沉积扇上部 毅力号 岩芯 3.50 沉积岩
    21 2023–09–15 913 Pilot Mountain 沉积扇上部 毅力号 岩芯 3.64 沉积岩
    22 2023–09–25 923 Pelican Point 撞击坑边缘 毅力号 岩芯 3.70 沉积岩
    23 2023–10–21 949 Lefroy Bay 撞击坑边缘 毅力号 岩芯 2.85 沉积岩
    24 2024–03–12 1088 Comet Geyser 撞击坑边缘 毅力号 岩芯 3.50 二氧化硅胶结碳酸盐
      第一个样品库位于Three Forks (沉积扇边缘, 见图9). 毅力号共携带43个样品管, 其中38个用来收集样品 (岩芯、风化层、   大气), 5个用来监测样品的污染状态.
    下载: 导出CSV
  • [1] 刘洋, 吴兴, 刘正豪, 等. 火星的地质演化和宜居环境研究进展[J]. 地球与行星物理论评, 2021, 52(4): 416-436

    LIU Yang, WU Xing, LIU Zhenghao, et al. Geological evolution and habitable environment of Mars: Progress and prospects[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(4): 416-436
    [2] EHLMANN B L, EDWARDS C S. Mineralogy of the Martian surface[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 291-315 doi: 10.1146/annurev-earth-060313-055024
    [3] ROVER TEAM. Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner[J]. Science, 1997, 278(5344): 1765-1768 doi: 10.1126/science.278.5344.1765
    [4] BLAKE D, TU V, BRISTOW T, et al. The Chemistry and Mineralogy (CheMin) X-ray diffractometer on the MSL Curiosity rover: A decade of mineralogy from Gale crater, Mars[J]. Minerals, 2024, 14(6): 568 doi: 10.3390/min14060568
    [5] RAMPE E B, BLAKE D F, BRISTOW T F, et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity[J]. Geochemistry, 2020, 80(2): 125605 doi: 10.1016/j.chemer.2020.125605
    [6] 李春来, 刘建军, 耿言, 等. 中国首次火星探测任务科学目标与有效载荷配置[J]. 深空探测学报, 2018, 5(5): 406-413

    LI Chunlai, LIU Jianjun, GENG Yan, et al. Scientific objectives and payload configuration of China’s first Mars exploration mission[J]. Journal of Deep Space Exploration, 2018, 5(5): 406-413
    [7] 林红磊, 林杨挺, 魏勇, 等. “祝融号”在轨定标光谱揭示火星北部低地卤水活动的矿物学证据[J]. 中国科学: 地球科学, 2023, 53(11): 2506-2515

    LIN Honglei, LIN Yangting, WEI Yong, et al. Mineralogical evidence of water activity in the northern lowlands of Mars based on inflight-calibrated spectra from the Zhurong rover[J]. Science China Earth Sciences, 2023, 66(11): 2463-2472
    [8] 谢涓, 闫凯, 康志忠, 等. “祝融号”火星车多光谱相机岩矿类型识别的地面验证研究[J]. 遥感学报, 2021, 25(7): 1385-1399 doi: 10.11834/jrs.20211065

    XIE Juan, YAN Kai, KANG Zhizhong, et al. Verification study for the mineral and rock identification using multispectral camera of the “Zhurong” Mars Rover on the earth[J]. National Remote Sensing Bulletin, 2021, 25(7): 1385-1399 doi: 10.11834/jrs.20211065
    [9] WAN W X, WANG C, LI C L, et al. The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1)[J]. Earth and Planetary Physics, 2020, 4(4): 331-332 doi: 10.26464/epp2020052
    [10] WU B, DONG J, WANG Y R, et al. Characterization of the candidate landing region for Tianwen-1-China's first mission to Mars[J]. Earth and Space Science, 2021, 8(6): e2021EA001670 doi: 10.1029/2021EA001670
    [11] LIU C Q, LING Z C, WU Z C, et al. Aqueous alteration of the Vastitas Borealis Formation at the Tianwen-1 landing site[J]. Communications Earth :Times New Roman;">& Environment, 2022, 3(1): 280
    [12] LIU J J, LI C L, ZHANG R Q, et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars[J]. Nature Astronomy, 2021, 6(1): 65-71 doi: 10.1038/s41550-021-01519-5
    [13] LI C, ZHENG Y K, WANG X, et al. Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar[J]. Nature, 2022, 610(7931): 308-312 doi: 10.1038/s41586-022-05147-5
    [14] FARLEY K A, WILLIFORD K H, STACK K M, et al. Mars 2020 mission overview[J]. Space Science Reviews, 2020, 216(8): 142 doi: 10.1007/s11214-020-00762-y
    [15] WILLIFORD K H, FARLEY K A, STACK K M, et al. The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life[M]//CABROL N A, GRIN E A. From Habitability to Life on Mars. Amsterdam: Elsevier, 2018: 275-308
    [16] WERNER S C, IVANOV B A, NEUKUM G. Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains[J]. Icarus, 2009, 200(2): 406-417 doi: 10.1016/j.icarus.2008.10.011
    [17] MANDON L, QUANTIN-NATAF C, THOLLOT P, et al. Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars[J]. Icarus, 2020, 336: 113436 doi: 10.1016/j.icarus.2019.113436
    [18] FASSETT C I, HEAD J W. Sequence and timing of conditions on early Mars[J]. Icarus, 2011, 211(2): 1204-1214 doi: 10.1016/j.icarus.2010.11.014
    [19] FASSETT C I, HEAD J W. Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region[J]. Geophysical Research Letters, 2005, 32(14): 2005GL023456 doi: 10.1029/2005GL023456
    [20] MANGOLD N, DROMART G, ANSAN V, et al. Fluvial regimes, morphometry, and age of Jezero crater paleolake inlet valleys and their exobiological significance for the 2020 rover mission landing site[J]. Astrobiology, 2020, 20(8): 994-1013 doi: 10.1089/ast.2019.2132
    [21] SCHON S C, HEAD J W, FASSETT C I. An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate[J]. Planetary and Space Science, 2012, 67(1): 28-45 doi: 10.1016/j.pss.2012.02.003
    [22] STACK K M, WILLIAMS N R, CALEF III F, et al. Photogeologic map of the Perseverance rover field site in Jezero crater constructed by the Mars 2020 science team[J]. Space Science Reviews, 2020, 216(8): 127 doi: 10.1007/s11214-020-00739-x
    [23] HORGAN B H N, ANDERSON R B, DROMART G, et al. The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars[J]. Icarus, 2020, 339: 113526 doi: 10.1016/j.icarus.2019.113526
    [24] GOUDGE T A, MOHRIG D, CARDENAS B T, et al. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars[J]. Icarus, 2018, 301: 58-75 doi: 10.1016/j.icarus.2017.09.034
    [25] MANGOLD N, GUPTA S, GASNAULT O, et al. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars[J]. Science, 2021, 374(6568): 711-717 doi: 10.1126/science.abl4051
    [26] BRAMBLE M S, MUSTARD J F, SALVATORE M R. The geological history of Northeast Syrtis Major, Mars[J]. Icarus, 2017, 293: 66-93 doi: 10.1016/j.icarus.2017.03.030
    [27] EHLMANN B L, MUSTARD J F. An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major[J]. Geophysical Research Letters, 2012, 39(11): 2012GL051594 doi: 10.1029/2012GL051594
    [28] GOUDGE T A, MUSTARD J F, HEAD J W, et al. Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars[J]. Journal of Geophysical Research: Planets, 2015, 120(4): 775-808 doi: 10.1002/2014JE004782
    [29] POULET F, BIBRING J P, MUSTARD J F, et al. Phyllosilicates on Mars and implications for early martian climate[J]. Nature, 2005, 438(7068): 623-627 doi: 10.1038/nature04274
    [30] MUSTARD J F, EHLMANN B L, MURCHIE S L, et al. Composition, morphology, and stratigraphy of noachian crust around the Isidis basin[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D12
    [31] EHLMANN B L, MUSTARD J F, SWAYZE G A, et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D08
    [32] HOEFEN T M, CLARK R N, BANDFIELD J L, et al. Discovery of olivine in the Nili Fossae region of Mars[J]. Science, 2003, 302(5645): 627-630 doi: 10.1126/science.1089647
    [33] EHLMANN B L, MUSTARD J F, FASSETT C I, et al. Clay minerals in delta deposits and organic preservation potential on Mars[J]. Nature Geoscience, 2008, 1(6): 355-358 doi: 10.1038/ngeo207
    [34] AMADOR E S, BANDFIELD J L. Elevated bulk-silica exposures and evidence for multiple aqueous alteration episodes in Nili Fossae, Mars[J]. Icarus, 2016, 276: 39-51 doi: 10.1016/j.icarus.2016.04.015
    [35] BALARAM J, AUNG M, GOLOMBEK M P. The Ingenuity helicopter on the Perseverance rover[J]. Space Science Reviews, 2021, 217(4): 56 doi: 10.1007/s11214-021-00815-w
    [36] MAURICE S, WIENS R C, BERNARDI P, et al. The SuperCam instrument suite on the Mars 2020 rover: Science objectives and mast-unit description[J]. Space Science Reviews, 2021, 217(3): 47 doi: 10.1007/s11214-021-00807-w
    [37] WIENS R C, MAURICE S, ROBINSON S H, et al. The SuperCam instrument suite on the NASA Mars 2020 rover: Body unit and combined system tests[J]. Space Science Reviews, 2021, 217(1): 4 doi: 10.1007/s11214-020-00777-5
    [38] BELL J F, MAKI J N, MEHALL G L, et al. The Mars 2020 Perseverance rover Mast Camera Zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation[J]. Space Science Reviews, 2021, 217(1): 24 doi: 10.1007/s11214-020-00755-x
    [39] BHARTIA R, BEEGLE L W, DEFLORES L, et al. Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) investigation[J]. Space Science Reviews, 2021, 217(4): 58 doi: 10.1007/s11214-021-00812-z
    [40] WOGSLAND B V, MINITTI M E, KAH L C, et al. Science and science-enabling activities of the SHERLOC and WATSON imaging systems in Jezero crater, Mars[J]. Earth and Space Science, 2023, 10(11): e2022EA002544 doi: 10.1029/2022EA002544
    [41] ALLWOOD A C, WADE L A, FOOTE M C, et al. PIXL: Planetary instrument for X-ray lithochemistry[J]. Space Science Reviews, 2020, 216(8): 134 doi: 10.1007/s11214-020-00767-7
    [42] MOELLER R C, JANDURA L, ROSETTE K, et al. The Sampling and Caching Subsystem (SCS) for the scientific exploration of Jezero crater by the Mars 2020 Perseverance rover[J]. Space Science Reviews, 2021, 217(1): 5 doi: 10.1007/s11214-020-00783-7
    [43] COUSIN A, SAUTTER V, FABRE C, et al. SuperCam calibration targets on board the Perseverance rover: Fabrication and quantitative characterization[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106341 doi: 10.1016/j.sab.2021.106341
    [44] MADARIAGA J M, ARAMENDIA J, ARANA G, et al. Homogeneity assessment of the SuperCam calibration targets onboard rover Perseverance[J]. Analytica Chimica Acta, 2022, 1209: 339837 doi: 10.1016/j.aca.2022.339837
    [45] ANDERSON R B, FORNI O, COUSIN A, et al. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106347 doi: 10.1016/j.sab.2021.106347
    [46] BEYSSAC O. New trends in Raman spectroscopy: From high-resolution geochemistry to planetary exploration[J]. Elements, 2020, 16(2): 117-122 doi: 10.2138/gselements.16.2.117
    [47] FOUCHET T, REESS J M, MONTMESSIN F, et al. The SuperCam infrared spectrometer for the Perseverance rover of the Mars2020 mission[J]. Icarus, 2022, 373: 114773 doi: 10.1016/j.icarus.2021.114773
    [48] FAU A, BEYSSAC O, GAUTHIER M, et al. Pulsed laser-induced heating of mineral phases: Implications for laser-induced breakdown spectroscopy combined with Raman spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 160: 105687 doi: 10.1016/j.sab.2019.105687
    [49] HAYES A G, CORLIES P, TATE C, et al. Pre-flight calibration of the Mars 2020 rover Mastcam Zoom (Mastcam-Z) multispectral, stereoscopic imager[J]. Space Science Reviews, 2021, 217(2): 29 doi: 10.1007/s11214-021-00795-x
    [50] KINCH K M, MADSEN M B, BELL J F, et al. Radiometric calibration targets for the Mastcam-Z camera on the Mars 2020 rover mission[J]. Space Science Reviews, 2020, 216(8): 141 doi: 10.1007/s11214-020-00774-8
    [51] RICE M S, JOHNSON J R, MILLION C C, et al. Spectral variability of rocks and soils on the Jezero crater floor: A summary of multispectral observations from Perseverance’s Mastcam-Z instrument[J]. Journal of Geophysical Research: Planets, 2023, 128(10): e2022JE007548 doi: 10.1029/2022JE007548
    [52] BHARTIA R, HUG W F, REID R D. Improved sensing using simultaneous deep UV Raman and fluorescence detection[C]//Proceedings Volume 8358, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII. Baltimore: SPIE, 2012
    [53] FRIES M D, LEE C, BHARTIA R, et al. The SHERLOC calibration target on the Mars 2020 Perseverance rover: Design, operations, outreach, and future human exploration functions[J]. Space Science Reviews, 2022, 218(6): 46 doi: 10.1007/s11214-022-00907-1
    [54] UCKERT K, BHARTIA R, BEEGLE L W, et al. Calibration of the SHERLOC deep ultraviolet fluorescence-Raman spectrometer on the Perseverance rover[J]. Applied Spectroscopy, 2021, 75(7): 763-773 doi: 10.1177/00037028211013368
    [55] RAZZELL HOLLIS J, MOORE K R, SHARMA S, et al. The power of paired proximity science observations: Co-located data from SHERLOC and PIXL on Mars[J]. Icarus, 2022, 387: 115179 doi: 10.1016/j.icarus.2022.115179
    [56] SCHELLER E L, RAZZELL HOLLIS J, CARDARELLI E L, et al. Aqueous alteration processes in Jezero crater, Mars-implications for organic geochemistry[J]. Science, 2022, 378(6624): 1105-1110 doi: 10.1126/science.abo5204
    [57] JENS E, TARANTINO P, PREUDHOMME M, et al. Precision cleaning samples for science analysis using a gas-based dust removal tool[C]//Proceedings of 2017 IEEE Aerospace Conference. Big Sky: IEEE, 2017
    [58] International MSR Objectives and Samples Team (IMOST), BEATY D W, GRADY M M, et al. The potential science and engineering value of samples delivered to Earth by Mars sample return[J]. Meteoritics :Times New Roman;">& Planetary Science, 2019, 54(3): 667-671
    [59] KRONYAK R E, KRUGER A W, SUN V Z, et al. Development and execution of the Mars 2020 Perseverance rover’s sampling strategy[C]//Proceedings of 2024 IEEE Aerospace Conference. Big Sky: IEEE, 2024
    [60] SUN V Z, HAND K P, STACK K M, et al. Exploring the Jezero crater floor: Overview of results from the Mars 2020 Perseverance rover’s first science campaign[C]//Proceedings of the 53rd Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2022
    [61] WILLIAMS A J, RUSSELL P S, SUN V Z, et al. Exploring the Jezero delta front: Overview of results from the Mars 2020 Perseverance rover’s second science campaign[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Universities Space Research Association, Lunar and Planetary Institute, 2023
    [62] NACHON M, SIEBACH K L, SHOLES S F, et al. Overview of the Mars 2020 mission Perseverance rover third science campaign: Exploring Jezero crater’s upper fan[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [63] HORGAN B, GARCZYNSKI B, GUPTA S, et al. Campaign overview and initial results from exploration of the margin unit in Jezero crater by the Perseverance rover[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [64] SCHMIDT M E, ALLWOOD A, CHRISTIAN J, et al. Highly differentiated basaltic lavas examined by PIXL in Jezero crater[C]//Proceedings of the 53rd Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2022
    [65] UDRY A, OSTWALD A, SAUTTER V, et al. A Mars 2020 Perseverance SuperCam perspective on the igneous nature of the Máaz formation at Jezero crater and link with Séítah, Mars[J]. Journal of Geophysical Research: Planets, 2023, 128(7): e2022JE007440 doi: 10.1029/2022JE007440
    [66] WIENS R C, UDRY A, BEYSSAC O, et al. Compositionally and density stratified igneous terrain in Jezero crater, Mars[J]. Science Advances, 2022, 8(34): eabo3399 doi: 10.1126/sciadv.abo3399
    [67] SIMON J I, HICKMAN-LEWIS K, COHEN B A, et al. Samples collected from the floor of Jezero crater with the Mars 2020 Perseverance rover[J]. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE007474 doi: 10.1029/2022JE007474
    [68] SUN V Z, HAND K P, STACK K M, et al. Overview and results from the Mars 2020 Perseverance rover’s first science campaign on the Jezero crater floor[J]. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE-007613 doi: 10.1029/2022JE007613
    [69] CLAVé E, BENZERARA K, MESLIN P Y, et al. Carbonate detection with SuperCam in igneous rocks on the floor of Jezero crater, Mars[J]. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE007463 doi: 10.1029/2022JE007463
    [70] CORPOLONGO A, JAKUBEK R S, BURTON A S, et al. SHERLOC Raman mineral class detections of the Mars 2020 crater floor campaign[J]. Journal of Geophysical Research: Planets, 2023, 128(3): e2022JE007455 doi: 10.1029/2022JE007455
    [71] FARLEY K A, STACK K M, SHUSTER D L, et al. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars[J]. Science, 2022, 377(6614): eabo2196 doi: 10.1126/science.abo2196
    [72] MANDON L, QUANTIN-NATAF C, ROYER C, et al. Reflectance of Jezero crater floor: 2. Mineralogical interpretation[J]. Journal of Geophysical Research: Planets, 2023, 128(7): e2022JE007450 doi: 10.1029/2022JE007450
    [73] TICE M M, HUROWITZ J A, ALLWOOD A C, et al. Alteration history of Séítah formation rocks inferred by PIXL X-ray fluorescence, X-ray diffraction, and multispectral imaging on Mars[J]. Science Advances, 2022, 8(47): eabp9084 doi: 10.1126/sciadv.abp9084
    [74] BEYSSAC O, FORNI O, COUSIN A, et al. Petrological traverse of the olivine cumulate Séítah formation at Jezero crater, Mars: A perspective from SuperCam onboard Perseverance[J]. Journal of Geophysical Research: Planets, 2023, 128(7): e2022JE007638 doi: 10.1029/2022JE007638
    [75] BELL J F, MAKI J N, ALWMARK S, et al. Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater[J]. Science Advances, 2022, 8(47): eabo4856 doi: 10.1126/sciadv.abo4856
    [76] GARCZYNSKI B J, BELL III J F, HORGAN B H N, et al. Perseverance and the purple coating: A Mastcam-Z multispectral story[C]//Proceedings of the 53rd Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2022
    [77] SHARMA S, ROPPEL R D, MURPHY A E, et al. Diverse organic-mineral associations in Jezero crater, Mars[J]. Nature, 2023, 619(7971): 724-732 doi: 10.1038/s41586-023-06143-z
    [78] STACK K M, IVES L R W, GUPTA S, et al. Sedimentology and stratigraphy of the Shenandoah formation, western Fan, Jezero crater, Mars[J]. Journal of Geophysical Research: Planets, 2024, 129(2): e2023JE008187 doi: 10.1029/2023JE008187
    [79] BROZ A P, HORGAN B H, KALUCHA H, et al. Biosignature preservation potential of sulfate-rich rocks from Hogwallow Flats, Jezero crater, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [80] DEHOUCK E, FORNI O, QUANTIN-NATAF C, et al. Overview of the bedrock geochemistry and mineralogy observed by SuperCam during Perseverance's delta front campaign[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2023
    [81] HUROWITZ J A, CATLING D C, FISCHER W W. High carbonate alkalinity lakes on Mars and their potential role in an origin of life beyond earth[J]. Elements, 2023, 19(1): 37-44 doi: 10.2138/gselements.19.1.37
    [82] NACHON M, LÓPEZ-REYES G, MESLIN P Y, et al. Light-toned veins and material in Jezero crater, Mars, as seen in-situ via NASA’s Perseverance rover (Mars 2020 mission): stratigraphic distribution and compositional results[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [83] NÚÑEZ J I, JOHNSON J R, RICE M S, et al. Spectral diversity in fluvio-deltaic deposits in the western delta fan in Jezero crater, Mars as seen with Mastcam-Z on the Mars 2020 Perseverance rover[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [84] ROYER C, POULET F, WIENS R C, et al. Jezero delta mineralogical diversity revealed by SuperCam infrared spectral modeling[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2023
    [85] BOSAK T, SHUSTER D L, WEISS B, et al. Astrobiological potential of rocks acquired by the Perseverance rover at the front of the western sediment fan in Jezero crater, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [86] GARCZYNSKI B J, HORGAN B H N, JOHNSON J R, et al. Rock coatings as evidence for late surface alteration on the floor of Jezero crater, Mars[EB/OL]. ESS Open Archive, (2023-07-08)[2024-07-16]. https://doi.org/10.22541/essoar.168882010.05601670/v1
    [87] BEYSSAC O, CLAVÉ E, DEHOUCK E, et al. A journey across the transition between the igneous Séítah floor unit and the delta with the Mars2020 SuperCam instrument at Jezero crater, Mars[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2023
    [88] BENISON K C, GILL K K, SHARMA S, et al. Depositional and diagenetic sulfates of Hogwallow Flats and Yori Pass, Jezero crater: Evaluating preservation potential of environmental indicators and possible biosignatures from past Martian surface waters and ground-waters[J]. Journal of Geophysical Research: Planets, 2024, 129(2): e2023JE008155 doi: 10.1029/2023JE008155
    [89] PHUA Y Y, EHLMANN B L, SILJESTRÖM S, et al. Sulfates as hydration carrier phases in altered rocks of Jezero crater fan and floor geologic units from SHERLOC on Mars 2020[C]//Proceedings of AGU Fall Meeting. San Francisco: AGU, 2023
    [90] LOPEZ-REYES G, NACHON M, VENERANDA M, et al. Anhydrite detections by Raman spectroscopy with SuperCam at the Jezero delta, Mars[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2023
    [91] FORNI O, BEDFORD C C, ROYER C, et al. Nickel-copper deposits on Mars? Discovery of ore-grade abundances, and implications on formation and alteration[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [92] CARAVACA G, DROMART G, MANGOLD N, et al. Depositional facies and sequence stratigraphy of Kodiak Butte, western Delta of Jezero crater, Mars[J]. Journal of Geophysical Research: Planets, 2024, 129(4): e2023JE008205 doi: 10.1029/2023JE008205
    [93] GUPTA S, STACK MORGAN K, MANGOLD N, et al. Going with the flow: Sedimentary evolution of the Jezero western fan, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [94] TICE M M, HUROWITZ J A, SIEBACH K L, et al. Regional paleoenvironments recorded in sedimentary rocks of the western Fan-Delta, Jezero crater, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [95] WEISS B P, NACHON M, SIEBACH K, et al. Perseverance samples from the Jezero upper Fan[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [96] BEYSSAC O, CLAVÉ E, UDRY A, et al. What are the olivine-rich boulders in the Upper Fan and Margin Unit at Jezero crater, Mars?[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [97] DEHOUCK E, CLAVÉ E, BEYSSAC O, et al. Pristine pyroxene-bearing boulders analyzed by SuperCam in the Jezero western Fan, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [98] KIZOVSKI T V, SCHMIDT M E, O'NEIL L, et al. Fe-phosphates in the Jezero crater fan: Implications for habitability and sample return[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [99] SILJESTRÖM S, FARLEY K A, BOSAK T, et al. Sampling the margin unit of Jezero crater, Mars for future Mars sample return[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [100] CLAVÉ E, BECK P, BEYSSAC O, et al. New constraints on the “Marginal Carbonates” from in situ observations with SuperCam, Mars2020[C]//Proceedings of Europlanet Science Congress. Berlin: Freie Universität, 2024
    [101] GARCZYNSKI B J, JOHNSON J R, HORGAN B, et al. Initial Mastcam-Z multispectral results from the Perseverance rover’s exploration of the Margin Unit in Jezero crater, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [102] WIENS R C, CLAVÉ E, BECK P, et al. Chemistry and mineralogy of the margin unit, Jezero crater, Mars, observed by M2020 / SuperCam[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [103] MANSBACH E N, MANSBACH E N, KIZOVSKI T V, et al. Likely ferromagnetic minerals identified by the Perseverance rover and implications for future paleomagnetic analyses of returned martian samples[J]. Journal of Geophysical Research: Planets, 2024, 129(9): e2024JE008505 doi: 10.1029/2024JE008505
    [104] ROYER C, BEDFORD R C, WIENS R C, et al. Mineral composition of Al-rich float rocks in Jezero crater as seen by SuperCam[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [105] WEISS B P, MANSBACH E N, CARSTEN J L, et al. Oriented bedrock samples drilled by the Perseverance rover on Mars[J]. Earth and Space Science, 2024, 11(3): e2023EA003322 doi: 10.1029/2023EA003322
    [106] ZORZANO M P, MARTÍNEZ G, POLKKO J, et al. Present-day thermal and water activity environment of the Mars Sample Return collection[J]. Scientific Reports, 2024, 14(1): 7175 doi: 10.1038/s41598-024-57458-4
    [107] SILJESTRÖM S, CZAJA A D, CORPOLONGO A, et al. Evidence of sulfate‐rich fluid alteration in Jezero crater floor, Mars[J]. Journal of Geophysical Research: Planets, 2024, 129(1): e2023JE007989 doi: 10.1029/2023JE007989
    [108] PHUA Y Y, EHLMANN B L, SILJESTRÖM S, et al. Characterizing hydrated sulfates and altered phases in Jezero crater Fan and floor geologic units with SHERLOC on Mars 2020[J]. Journal of Geophysical Research: Planets, 2024, 129(7): e2023JE008251 doi: 10.1029/2023JE008251
    [109] MAYHEW L E, QUANTIN-NATAF C, SCHELLER E L, et al. The scientific value of collecting samples from the Jezero crater rim[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [110] QUANTIN-NATAF C, ALWMARK S, CALEF F J, et al. The complex exhumation history of Jezero crater floor unit and its implication for mars sample return[J]. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE007628 doi: 10.1029/2022JE007628
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  621
  • HTML全文浏览量:  139
  • PDF下载量:  108
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-09-20
  • 修回日期:  2024-11-07
  • 网络出版日期:  2024-12-09

目录

    /

    返回文章
    返回