Influence of Substrate Bias on the Microstructure, Chemical Composition and Mechanical Properties of TiN Coatings
-
摘要: 采用高功率脉冲磁控溅射(HiPIMS)技术在9Cr18钢等基材上沉积了TiN涂层, 系统研究了不同偏压对涂层微观结构、化学成分以及机械性能的影响. 结果表明, 随着偏压的增加, TiN涂层的组织结构逐渐致密, 晶粒细化为不规则的三棱锥状, 涂层表面的致密度先增加后减少, 而截面形貌始终保持致密结构. TiN涂层的择优取向为(200)面. 涂层中Ti元素的含量在51 at%~56 at% (原子百分比)之间变化, 外观颜色稳定为紫色. 当偏压为–150 V时, 涂层的硬度最高, 约为21.2 GPa, 弹性模量约为221 GPa. 同时, 涂层还具有最大压缩残余应力, 约为2.79 GPa. 在不同偏压下, 涂层与基体之间存在较高的结合强度, 范围为49~74 N. 施加适当的负偏压可以增加基体表面受到的离子轰击能量, 促进涂层的致密化, 减少孔隙和缺陷, 提高涂层的机械性能以及涂层与基材之间的结合强度.Abstract: TiN coatings were used to deposite on 9Cr18 steel substrate by High-Power Impulsed Magnetron Sputtering (HiPIMS) technology. The influence of different substrate bias voltage on microstructure, chemical composition and mechanical properties of TiN coatings were systematically investigated. The crystal phase structure of the coatings were analyzed by X-ray diffractometer, the surface and cross-section structure and the elemental composition of the coatings were analyzed by field emission scanning electron microscopy and energy dispersive spectrometer. In addition, the hardness and elastic modulus of the coatings were measured by nanoindenter, the adhesion strength of coatings were analyzed by scratch tester and optical microscope, and the compressive residual stress of the coatings were analyzed by stress tester. The results indicate that: with the increase of substrate bias voltage, the microstructure of TiN coating gradually becomes denser, and the grains are refined into triangular pyramid shape. The density of the TiN coating surface was first increased and then decreased, while the cross-sectional morphology always maintain the dense structure. In addition, the preferred orientation of coatings were TiN (200) plane. The content of Ti element in the coatings vary between 51 at% and 56 at% and the appearance color of the coatings were stable in purple. The coating was the highest hardness, about 21.2 GPa, and the highest elastic modulus was about 221 GPa when the substrate bias voltage was -150 V. At the same time, the coating also showed the maximum compressive residual stress, approximately 2.79 GPa. Under the different structure bias voltages, the adhesion strength between the TiN coatings and the substrate were excellent, ranging from 49 N to 74 N. Applying an appropriate substrate bias can increase the energy of ion bombardment on substrate surface, promoting the densification of the coatings, reducing pores, defects and improve the mechanical properties of coatings. Besides, the appropriate substrate bias also can enhance the adhesion strength between the coatings and the substrate.
-
表 1 采用HiPIMS技术在不同基体偏压下沉积TiN涂层的工艺参数
Table 1. Process parameters for depositing TiN coatings by using HiPIMS technology under different substrate bias voltage
Parameters Values Base pressure / Pa 1.0 × 10–3 Working pressure/ Pa 1.3 Bias voltage/ V –90/–120/–150/–180 Average output power/ kW 5 Peak current/A 180 Frequency/ Hz 100 Ar flow rate/ sccm 60 N2 flow rate/ sccm 60 Deposition time / h 3 -
[1] BAGDASARYAN A A, PSHYK A V, COY L E, et al. Structural and mechanical characterization of (TiZrNbHfTa)N/WN multilayered nitride coatings[J]. Materials Letters, 2018, 229: 364-367 doi: 10.1016/j.matlet.2018.07.048 [2] CHEN Q C, WU G Z, LI D S, et al. Understanding the unusual friction behavior of TiN films in vacuum[J]. Tribology International, 2019, 137: 379-386 doi: 10.1016/j.triboint.2019.05.024 [3] VALOUR A, HIGUITA M A U, GUILLONNEAU G, et al. Optical, electrical and mechanical properties of TiN thin film obtained from a TiO2 sol-gel coating and rapid thermal nitridation[J]. Surface and Coatings Technology, 2021, 413: 127089 doi: 10.1016/j.surfcoat.2021.127089 [4] KIRAN M S R N, GHANASHYAM KRISHNA M, PADMANABHAN K A. Growth, surface morphology, optical properties and electrical resistivity of ɛ-TiNx (0.4<x≤0.5) films[J]. Applied Surface Science, 2008, 255(5): 1934-1941 doi: 10.1016/j.apsusc.2008.06.122 [5] MISHRA S K, KUMAR R, SONI, et al. Ultrathin to nano thickness TiN coatings: processing, structural, mechanical behavior[J]. Journal of Materials Engineering and Performance, 2015, 24: 5013-5021 [6] VAZ F, FERREIRA J, RIBEIRO E, et al. Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films[J]. Surface and Coatings Technology, 2005, 191(2-3): 317-323 doi: 10.1016/0257-8972(90)90156-7 [7] 吴勇, 杨汉哲, 孙清云, 等. TiCN, TiAlN, TiAlCN涂层研究现状[J]. 材料保护, 2023, 56(9): 1-10WU Yong, YANG Hanzhe, SUN Qingyun, et al. Research progress of TiCN, TiAlN and TiAlCN coatings[J]. Materials Protection, 2023, 56(9): 1-10 [8] 李鑫栋. 多元和多层CrN涂层高温性能研究[D]. 兰州: 兰州理工大学, 2023LI Xindong. Investigation of High Temperature Properties for Multicomponent and Multilayer CrN Coatings[D]. Lanzhou: Lanzhou University of Technology, 2023 [9] ELMKHAH H, ZHANG T F, ABDOLLAH-ZADEH A, et al. Surface characteristics for the Ti-Al-N coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages[J]. Journal of Alloys and Compounds, 2016, 688: 820-827 doi: 10.1016/j.jallcom.2016.07.013 [10] ALAMI J, BOLZ S, SARAKINOS K. High power pulsed magnetron sputtering: fundamentals and applications[J]. Journal of Alloys and Compounds, 2009, 483(1/2): 530-534 [11] 李春伟, 苗红涛, 徐淑艳, 等. 复合高功率脉冲磁控溅射技术的研究进展[J]. 表面技术, 2016, 45(6): 82-90LI Chunwei, MIAO Hongtao, XU Shuyan, et al. Research progress of hybrid high power impulse magnetron sputtering[J]. Surface Technology, 2016, 45(6): 82-90 [12] 杜建融, 陶冠羽, 陈辉, 等. 偏压对HiPIMS制备TiAlSiN涂层结构与性能的影响[J]. 材料保护, 2024, 57(7): 30-42DU Jianrong, TAO Guanyu, CHEN Hui, et al. Influence of bias voltage on microstructure and properties of TiAlSiN coatings prepared by HiPIMS[J]. Materials Protection, 2024, 57(7): 30-42 [13] MA Q S, LI L H, XU Y, et al. Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J]. Applied Surface Science, 2017, 392: 826-833 doi: 10.1016/j.apsusc.2016.09.028 [14] LI Q, YANG L Z, WANG Z D, et al. The superior properties of CrN coatings prepared by high power pulsed reactive magnetron sputtering[J]. AIP Advances, 2020, 10(1): 015125 doi: 10.1063/1.5132783 [15] WANG Z D, ZHANG B, GAO K X, et al. Adjustable TiN coatings deposited with HiPIMS on titanium bipolar plates for PEMFC[J]. International Journal of Hydrogen Energy, 2022, 47(92): 39215-39224 doi: 10.1016/j.ijhydene.2022.09.066 [16] WU J, WU B H, MA D L, et al. Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering (HPPMS)[J]. Surface and Coatings Technology, 2017, 315: 258-267 doi: 10.1016/j.surfcoat.2017.02.051 [17] GAO H Y, ZHANG B, YANG P F, et al. Mechanical and tribological properties related on the texture of TiN films regulated via HiPIMS[J]. Chemical Physics Letters, 2023, 829: 140738 doi: 10.1016/j.cplett.2023.140738 [18] TANDEKAR N, MIRYALKAR P, RAMA KRISHNA L, et al. Influence of substrate bias on machining performance of TiAlN-coated drill bits[J]. Materials and Manufacturing Processes, 2024, 39(4): 518-528 doi: 10.1080/10426914.2023.2187824 [19] 佟莉娜, 黄美东, 孟凡宇, 等. 偏压对电弧镀TiN薄膜结构和机械性能的影响[J]. 天津师范大学学报(自然科学版), 2012, 32(2): 41-45TONG Lina, HUANG Meidong, MENG Fanyu, et al. Effects of negative bias on structure and mechanical properties of TiN coatings by arc ion plating[J]. Journal of Tianjin Normal University (Natural Science Edition), 2012, 32(2): 41-45 [20] 许双志, 董磊, 李德军, 等. 偏压对TiN薄膜和Ag-TiN复合膜力学性能的影响[J]. 天津师范大学学报(自然科学版), 2016, 36(1): 22-27XU Shuangzhi, DONG Lei, LI Dejun, et al. Influence of substrate bias voltage on mechanical properties of TiN and Ag-TiN nano-composite films[J]. Journal of Tianjin Normal University (Natural Science Edition), 2016, 36(1): 22-27 [21] 康建. 高功率脉冲磁控溅射法制备MoN基涂层及其摩擦学性能研究[D]. 青岛: 青岛理工大学, 2023KANG Jian. Study on Preparation and Tribological Properties of MoN-Based Coatings Deposited by High Power Pulsed Magnetron Sputtering[D]. Qingdao: Qingdao University of Technology, 2023 [22] POGREBNJAK A D, YAKUSHCHENKO I V, BAGDASARYAN A A, et al. Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions[J]. Materials Chemistry and Physics, 2014, 147(3): 1079-1091 doi: 10.1016/j.matchemphys.2014.06.062 [23] SHEN W J, TSAI M H, CHANG Y S, et al. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings[J]. Thin Solid Films, 2012, 520(19): 6183-6188 doi: 10.1016/j.tsf.2012.06.002 [24] LU X L, ZHANG C X, ZHANG X, et al. Dependence of mechanical and tribological performance on the microstructure of (CrAlTiNbV) Nx high-entropy nitride coatings in aviation lubricant[J]. Ceramics International, 2021, 47(19): 27342-27350 doi: 10.1016/j.ceramint.2021.06.156 [25] CHANG C L, LIN C Y, YANG F C, et al. The effect of match between high power impulse and bias voltage: TiN coating deposited by high power impulse magnetron sputtering[J]. Coatings, 2021, 11(7): 822 doi: 10.3390/coatings11070822 [26] 张剑, 林晓炜, 韩晓, 等. 工艺参数对反应磁控溅射TiN薄膜硬度的影响[J]. 沈阳理工大学学报, 2015, 34(6): 20-23 doi: 10.3969/j.issn.1003-1251.2015.06.005ZHANG Jian, LIN Xiaowei, HAN Xiao, et al. The effect of process parameters on hardness of TiN thin films by reactive magnetron sputtering[J]. Journal of Shenyang Ligong University, 2015, 34(6): 20-23 doi: 10.3969/j.issn.1003-1251.2015.06.005 [27] NOSE M, NAGAE T, YOKOTA M, et al. Electrical and colorimetric properties of TiN thin films prepared by DC reactive sputtering in a facing targets sputtering (FTS) system[J]. Surface and Coatings Technology, 1999, 116-119: 296-301 doi: 10.1016/S0257-8972(99)00131-0 [28] HSIEH M H, TSAI M H, SHEN W J, et al. Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings[J]. Surface and Coatings Technology, 2013, 221: 118-123 doi: 10.1016/j.surfcoat.2013.01.036 [29] HSUEH H T, SHEN W J, TSAI M H, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx[J]. Surface and Coatings Technology, 2012, 206(19/20): 4106-4112 [30] 张静. 双脉冲电场峰值电流及沉积时间对TiN薄膜结构与性能的影响[D]. 西安: 西安理工大学, 2018ZHANG Jing. Influence of Peak Current and Deposition Time by Dual Power Pulsed Electric Field on Structure and Properties of TiN Films[D]. Xi’an: Xi’an University of Technology, 2018 [31] LEYLAND A, MATTHEWS A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour[J]. Wear, 2000, 246(1/2): 1-11 [32] 徐星. 过渡金属氮化物纳米复合涂层的PVD制备及其摩擦学性能研究[D]. 广州: 华南理工大学, 2022XU Xing. Study on Tribological Properties of Transition Metal Nitride Nanocomposite Coating Synthesized by Physical Vapor Deposition[D]. Guangzhou: South China University of Technology, 2022 [33] SHAO W T, WU S K, YANG W, et al. Effect of modulation period on microstructure and mechanical properties of (AlSiTiVNbCr)N/(AlSiTiVNbCr)CN nano-multilayer films[J]. Vacuum, 2023, 207: 111660 doi: 10.1016/j.vacuum.2022.111660 [34] LU X L, SUI X D, KANG J, et al. Effect of peak current on the microstructure, mechanical properties and tribological behavior of MoxN coatings deposited by high power impulse magnetron sputtering[J]. Tribology International, 2023, 189: 108955 doi: 10.1016/j.triboint.2023.108955 [35] 王佐平. 多元类石墨碳膜对高速齿轮减震和润滑性的研究[D]. 西安: 西安理工大学, 2019WANG Zuoping. Study on the Damping and Lubrication of High Speed Gears by Multi-Component Graphite-Like Carbon Films[D]. Xi’an: Xi’an University of Technology, 2019 [36] 李永健, 孔营, 胡健, 等. 高功率脉冲电流对磁控溅射TiN薄膜结构及力学性能影响[J]. 真空科学与技术学报, 2015, 35(12): 1483-1488LI Yongjian, KONG Ying, HU Jian, et al. Synthesis of TiN coatings by high power pulsed magnetron sputtering and its mechanical properties[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(12): 1483-1488 [37] Ehiasarian A P, Münz W D, Hultman L, et al. High power pulsed magnetron sputtered CrNx films[J]. Surface and coatings technology, 2003, 163: 267-272. [38] 康建, 隋旭东, 杨淑燕, 等. 偏压对高功率脉冲磁控溅射法沉积MoN涂层结构及性能的影响[J]. 摩擦学学报, 2023, 43(10): 1118-1127Kang Jian, Sui Xudong, Yang Shuyan, et al. Effect of bias voltages on the structure and properties of MoN coatings deposited by high power pulsed magnetron sputtering[J]. Tribology, 2023, 43(10): 1118-1127] [39] 钟一昌, 任兴润, 黄柱, 等. 氮气流量对TiN薄膜组织结构及力学性能的影响[J]. 有色金属科学与工程, 2016, 7(3): 47-53ZHONG Yichang, REN Xingrun, HUANG Zhu, et al. Effect of nitrogen flow on microstructure and mechanical properties of TiN films[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 47-53 [40] 肖娜, 杜菲菲, 邢韵. TiN薄膜沉积条件对组织结构和结合力的影响[J]. 材料与冶金学报, 2015, 14(3): 211-216,221XIAO Na, DU Feifei, XING Yun. Effect of deposition conditions on structure and adhesion strength of TiN films[J]. Journal of Materials and Metallurgy, 2015, 14(3): 211-216,221 [41] 成靖文, 范洪远, 田颖萍. 氮气流量对反应磁控溅射TiN薄膜微结构与力学性能的影响[J]. 硬质合金, 2012, 29(4): 203-207 doi: 10.3969/j.issn.1003-7292.2012.04.003CHENG Jingwen, FAN Hongyuan, TIAN Yingping. Influence of nitrogen flux on microstructure and mechanical properties of TiN films deposited by reactive magnetron sputtering[J]. Cemented Carbide, 2012, 29(4): 203-207 doi: 10.3969/j.issn.1003-7292.2012.04.003 [42] 陈利, 汪秀全, 尹飞, 等. TiN涂层的微观组织结构及力学性能分析[J]. 硬质合金, 2006, 23(1): 8-10 doi: 10.3969/j.issn.1003-7292.2006.01.003CHEN Li, WANG Xiuquan, YIN Fei, et al. Research on microstructure and mechanical properties of TiN coating[J]. Cemented Carbide, 2006, 23(1): 8-10 doi: 10.3969/j.issn.1003-7292.2006.01.003 -
-
牟存礼 男, 1999年出生于山东省青岛市, 青岛农业大学在读硕士生, 现于中国科学院兰州物理化学研究所进行课题学习, 主要研究方向为氮化物基涂层的制备及其性能的研究. E-mail:
下载: