Research Progress and Fronts in Satellite-to-ground Laser Communication
-
摘要: 激光通信技术突破了传统微波通信的带宽限制, 成为实现高速率、大容量星地通信的重要手段, 特别适用于海量空间科学数据的传输. 星地激光通信技术在空间科学中具有广泛的应用前景, 是实现空间科学数据高效、快速传输的关键技术之一. 本文系统梳理了国内外星地激光通信的系统组成及实验成果, 详细介绍了实现稳定可靠通信的关键技术, 例如捕获跟踪瞄准、星上激光器技术等. 针对大气湍流对激光信道的影响, 分析了自适应光学等有效的抑制方法, 并汇总了基于新型结构光场的激光通信技术发展现状. 结合空间科学对数据传输的需求, 对星地激光通信的研究现状进行了总结, 并展望了未来的发展方向, 强调了其在空间科学和深空探测中的重要应用潜力.Abstract: With the increasing amount of data generated by scientific research such as remote sensing satellite imaging and deep space exploration, conventional microwave communications are unable to meet the current transmission needs of high-speed and large-capacity satellite-to-ground communications due to limitations in bandwidth and related technologies. Laser communication technology breaks through the bandwidth limitations and becomes an important means of satellite-to-ground communications, especially suitable for the transmission of massive space science data. The system composition and experimental results of satellite-to-ground laser communications at home and abroad systematically are sorted out, including communication wavelength, communication rate, modulation method, wavefront correction technology. The key technologies for achieving stable and reliable communications, such as precise pointing, rapid acquisition, high-precision tracking, and onboard laser technology are introduced in detail. Given the impact of atmospheric turbulence on laser channels, effective suppression methods such as adaptive optics are analyzed. The development status of laser communication technology based on new structured light fields including vortex beam, vector beam, and optical pin beam is summarized. Finally, combined with the demand of space science for data transmission, the research progress of satellite-to-ground laser communications is summarized and future development direction is prospected, emphasizing its important application potential in space science and deep space exploration.
-
表 1 国内外典型的星地激光通信系统
Table 1. Typical satellite-to-ground laser communication systems at home and abroad
地区 年份 项目/卫星 通信架构 通信波长 调制方式 通信速率 校正技术 美国 1995 GOLD GEO-Ground ↑514.5 nm
↓830 nm↑PPM
↓PPM↑1.024 Mbit$ \cdot $s–1
↓1.024 Mbit$ \cdot $s–1↑空间分集 2014 OPALS GEO-Ground ↑976 nm
↓1550 nm↓OOK ↓50 Mbit$ \cdot $s–1 ↑空间分集
↓AO2021 LCRD LEO-GOE-Ground ↑1555/1565 nm
↓1545 nm↑DPSK
↓DPSK↑1.244 Gbit$ \cdot $s–1
↓1.244 Gbit$ \cdot $s–1↑空间分集
↓AO2022 TBIRD LEO-Ground ↑1534 nm
↓1550 nm↑PPM
↓DP-QPSK↑2 Kbit$ \cdot $s–1
↓2×100 Gbit$ \cdot $s–1↑空间分集
↓AO欧洲 2010 OPTEL-µ LEO-Ground ↑1064 nm
↓1550 nm↑PPM
↓OOK↓2.5 Gbit$ \cdot $s–1 — 2013 EDRS LEO-GOE-Ground ↓1064 nm ↓BPSK ↓1.8 Gbit$ \cdot $s–1 ↓AO 2016 OSIRISv1 LEO-Ground ↓1550 nm ↓OOK ↓39 Mbit$ \cdot $s–1 ↓AO 中国 2011 海洋二号 LEO-Ground ↓1550 nm ↓OOK ↓504 Mbit$ \cdot $s–1 — 2016 墨子号 LEO-Ground ↑1064 nm
↓1550 nm↑PPM
↓DPSK↑20 Mbit$ \cdot $s–1
↓5.12 Gbit$ \cdot $s–1— 2017 实践十三号 GEO-Ground ↓1550 nm ↓OOK ↓5 Gbit$ \cdot $s–1 — 2020 实践二十号 GEO-Ground ↓1550 nm ↓QPSK ↓10 Gbit$ \cdot $s–1 ↓AO 注 “↑”表示上行链路, 即从地面站到卫星; “↓”表示下行链路, 即从卫星到地面站. 表 2 星地激光通信链路的功率预算
Table 2. Power budget of satellite-to-ground laser communication link
项目 数值 备注 $ {P}_{\mathrm{t}} $/dBm 23 200 mW发射功率 $ {G}_{\mathrm{t}} $/dB 94 80 μrad发散角 $ {L}_{\mathrm{s}}/\mathrm{d}\mathrm{B} $ –260 1300 km传输距离 $ {G}_{\mathrm{r}}/\mathrm{d}\mathrm{B} $ 120 500 mm天线尺寸 光纤耦合
效率/dB–8.10 多模通信 通信接收灵
敏度/dBm–25.98 单模通信 –38 多模通信 –42 单模通信 链路余量/dB –2.8 多模通信 –16.68 单模通信 -
[1] FRIED D L. Scintillation of a ground-to-space laser illuminator[J]. Journal of the Optical Society of America, 1967, 57(8): 980-983 doi: 10.1364/JOSA.57.000980 [2] MINOTT P O. Scintillation in an earth-to-space propagation path[J]. Journal of the Optical Society of America, 1972, 62(7): 885-888 [3] CZICHY R H, SODNIK Z, FURCH B. Design of an optical ground station for in-orbit checkout of free-space laser communication payloads[C]//Proceedings of the Free-Space Laser Communication Technologies VII. San Jose: SPIE, 1995 [4] WILSON K E. An Overview of the GOLD Experiment Between the ETS-6 Satellite and the Table Mountain Facility[R]. The Telecommunications and Data Acquisition Report, 1996 [5] BISWAS A, OAIDA B, ANDREWS K S, et al. Optical payload for lasercomm science (OPALS) link validation during operations from the ISS[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVII. San Francisco: SPIE, 2015 [6] WRIGHT M W, KOVALIK J, MORRIS J, et al. LEO-to-ground optical communications link using adaptive optics correction on the OPALS downlink[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII. San Francisco: SPIE, 2016 [7] ROBERTS W T, ANTSOS D, CROONQUIST A, et al. Overview of ground station 1 of the NASA space communications and navigation program[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII. San Francisco: SPIE, 2016 [8] ROBERTS JR L C, BURRUSS R, FREGOSO S, et al. The adaptive optics and transmit system for NASA's laser communications relay demonstration project[C]//Proceedings of the Laser Communication and Propagation through the Atmosphere and Oceans. San Diego: SPIE, 2016 [9] WILSON K E, ROBERTS JR L C. Recent developments in adaptive optics for the LCRD optical ground station at table mountain[C]//Proceedings of the International Conference on Space Optical Systems and Applications. Kobe, Japan, 2014 [10] ISRAEL D J, EDWARDS B L, BUTLER R L, et al. Early results from NASA’s laser communications relay demonstration (LCRD) experiment program[C]//Proceedings of the Free-Space Laser Communications XXXV. San Francisco: SPIE, 2023 [11] ROBERTS L C, MEEKER S R, TESCH J, et al. Performance of the adaptive optics system for laser communications relay demonstration’s ground station 1[J]. Applied Optics, 2023, 62(23): G26-G36 [12] ISRAEL D J, EDWARDS B L, BUTLER R L, et al. NASA's Laser communications relay demonstration (LCRD) experiment program: characterization and initial operations[C]//Proceedings of the Free-Space Laser Communications XXXVI. San Francisco: SPIE, 2024 [13] ROBINSON B S, BOROSON D M, SCHIELER C M, et al. TeraByte InfraRed delivery (TBIRD): a demonstration of large-volume direct-to-earth data transfer from low-earth orbit[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXX. San Francisco: SPIE, 2018 [14] RIESING K M, SCHIELER C M, BROWN J J, et al. Pointing, acquisition, and tracking for the TBIRD CubeSat mission: system design and pre-flight results[C]//Proceedings of the Free-Space Laser Communications XXXIV. San Francisco: SPIE, 2022 [15] SCHIELER C M, RIESING K M, HORVATH A J, et al. 200 Gbps TBIRD CubeSat downlink: pre-flight test results[C]//Proceedings of the Free-Space Laser Communications XXXIV. San Francisco: SPIE, 2022 [16] SCHIELER C M, RIESING K M, BILYEU B C, et al. TBIRD 200-Gbps CubeSat Downlink: system architecture and mission plan[C]//Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS). Kyoto City, Japan: IEEE, 2022 [17] PIAZZOLLA S, ROBERTS W T, KOVALIK J, et al. Ground station for terabyte infrared delivery (TBIRD)[C]//Proceedings of the Free-Space Laser Communications XXXV. San Francisco: SPIE, 2023 [18] SCHIELER C M, RIESING K M, BILYEU B C, et al. On-orbit demonstration of 200-Gbps laser communication downlink from the TBIRD CubeSat[C]//Proceedings of the Free-Space Laser Communications XXXV. San Francisco: SPIE, 2023 [19] RIESING K, SCHIELER C, BILYEU B, et al. Operations and results from the 200 Gbps TBIRD laser communication mission[C]//Proceedings of the 37th Annual Small Satellite Conference. Logan: Utah State University, 2023 [20] BUCHHEIM K. OPTEL-µ: a compact system for optical downlink from LEO satellites[C]//SpaceOps 2012 Conference. Stockholm, Sweden: American Institute of Aeronautics and Astronautics, 2012 [21] BAISTER G, GREGER R, BACHER M, et al. OPTEL-μ LEO to ground laser communications terminal: flight design and status of the EQM development project[C]//Proceedings of the International Conference on Space Optics—ICSO 2016. Biarritz: SPIE, 2017 [22] SAUCKE K, SEITER C, HEINE F, et al. The Tesat transportable adaptive optical ground station[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII. San Francisco: SPIE, 2016 [23] FISCHER E, KUDIELKA K, BERKEFELD T, et al. Adaptive optics upgrades for laser communications to the ESA optical ground station[C]//Proceedings of the International Conference on Space Optics—ICSO 2020. SPIE, 2021 [24] KUDIELKA K, FISCHER E, BERKEFELD T, et al. Optical feeder link demonstrations between the ESA optical ground station and alphasat[C]//Proceedings of the 2023 IEEE International Conference on Space Optical Systems and Applications (ICSOS). Vancouver: IEEE, 2023 [25] GIGGENBACH D, FUCHS C, SCHMIDT C, et al. Downlink communication experiments with OSIRISv1 laser terminal onboard flying laptop satellite[J]. Applied Optics, 2022, 61(8): 1938-1946 doi: 10.1364/AO.446771 [26] 张庆君, 张健, 张欢, 等. 海洋二号卫星工程研制及在轨运行简介[J]. 中国工程科学, 2013, 15(7): 12-18 doi: 10.3969/j.issn.1009-1742.2013.07.002ZHANG Qingjun, ZHANG Jian, ZHANG Huan, et al. The study of HY-2A satellite engineering development and in-orbit movement[J]. Strategic Study of CAE, 2013, 15(7): 12-18 doi: 10.3969/j.issn.1009-1742.2013.07.002 [27] CHEN W B, SUN J F, HOU X, et al. 5.12 Gbps optical communication link between LEO satellite and ground station[C]//Proceedings of the 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS). Naha: IEEE, 2017 [28] 崔岳, 唐勇. 实践二十号卫星在轨核心试验全部完成[J]. 国际, 2020(7): 38-41 doi: 10.3969/j.issn.1009-2366.2020.07.010CUI Yue, TANG Yong. The in-orbit core test of Shishi No. 20 satellite has been completed[J]. Space International, 2020(7): 38-41 doi: 10.3969/j.issn.1009-2366.2020.07.010 [29] EPPLE B. Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals[C]//Proceedings of the Free-Space Laser Communications VI. San Diego: SPIE, 2006 [30] 赵雪, 母一宁, 姜非欧, 等. GPS/INS技术在静态激光通信初始捕获中的应用[J]. 激光与红外, 2012, 42(5): 505-509 doi: 10.3969/j.issn.1001-5078.2012.05.006ZHAO Xue, MU Yining, JIANG Feiou, et al. Application of GPS/INS technology in the initial capture of static laser communication[J]. Laser :Times New Roman;">& Infrared, 2012, 42(5): 505-509 doi: 10.3969/j.issn.1001-5078.2012.05.006 [31] 侯霞, 刘哲绮, 常亦迪, 等. 卫星激光通信技术发展现状与趋势分析[J]. 中国激光, 2024, 51(11): 1101013HOU Xia, LIU Zheqi, CHANG Yidi, et al. Analysis on development status and trend of space laser communication technology[J]. Chinese Journal of Lasers, 2024, 51(11): 1101013 [32] SCHEINFEILD M, KOPEIKA N S, SHLOMI A. Acquisition time calculation and influence of vibrations for microsatellite laser communication in space[C]//Proceedings of the Acquisition, Tracking, and Pointing XV. Orlando: SPIE, 2001 [33] 范新坤. 空间激光通信系统中激光光斑精密判读技术[D]. 长春: 长春理工大学, 2018FAN Xinkun. The Precision Detection Technology of Laser Spot in Space Laser Communication System[D]. Changchun: Changchun University of Science and Technology, 2018 [34] 许源. 基于Zynq的无线光通信平台目标对准跟踪技术研究[D]. 长春: 长春理工大学, 2023XU Yuan. Research on Target Alignment and Tracking Technology of Infinite Optical Communication Platform Based on Zyn[D]. Changchun: Changchun University of Science and Technology, 2023 [35] 吕春雷, 佟首峰. 高带宽高跟踪精度复合轴APT精跟踪系统的实现[J]. 大连海事大学学报, 2012, 38(3): 96-100LÜ Chunlei, TONG Shoufeng. Realization of high bandwidth and high tracking accuracy fine tracking assembly of compound-axis[J]. Journal of Dalian Maritime University, 2012, 38(3): 96-100 [36] 吴峥. 空间激光通信无信标捕跟成像系统研究[D]. 长春: 长春理工大学, 2021WU Zheng. Research on Imaging System of Beaconless Acquisition and Tracking for Space Laser Communication System[D]. Changchun: Changchun University of Science and Technology, 2021 [37] 王俊尧. 空间多节点间激光通信组网APT技术研究[D]. 长春: 长春理工大学, 2023WANG Junyao. Research on APT Technology for Space Multi-Node Laser Communication Networking[D]. Changchun: Changchun University of Science and Technology, 2023 [38] 高建秋, 孙建锋, 李佳蔚, 等. 基于激光章动的空间光到单模光纤的耦合方法[J]. 中国激光, 2016, 43(8): 801001 doi: 10.3788/CJL201643.0801001GAO Jianqiu, SUN Jianfeng, LI Jiawei, et al. Coupling method for making space light into single-mode fiber based on laser nutation[J]. Chinese Journal of Lasers, 2016, 43(8): 801001 doi: 10.3788/CJL201643.0801001 [39] 郑燕红, 王岩, 陈兴林. 卫星光通信APT控制系统H∞设计[J]. 航空学报, 2008, 29(6): 1619-1625 doi: 10.3321/j.issn:1000-6893.2008.06.033ZHENG Yanhong, WANG Yan, CHEN Xinglin. H∞ control applied for APT system of inter-satellite laser communications[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1619-1625 doi: 10.3321/j.issn:1000-6893.2008.06.033 [40] 韩立强, 王祁, 信太克归, 等. 空间光通信ATP系统粗跟踪平台的混合自适应控制[J]. 燕山大学学报, 2009, 33(5): 377-381,404 doi: 10.3969/j.issn.1007-791X.2009.05.001HAN Liqiang, WANG Qi, SHIDA K, et al. Hybrid self-adaptive control of coarse tracking platform in ATP system for space optical communication[J]. Journal of Yanshan University, 2009, 33(5): 377-381,404 doi: 10.3969/j.issn.1007-791X.2009.05.001 [41] 黄海波, 艾勇, 左韬, 等. 自由空间光通信精跟踪模糊控制系统的设计[J]. 光电子 $ \cdot $激光, 2010, 21(3): 366-370HUANG Haibo, AI Yong, ZUO Tao, et al. Design of fuzzy control system for fine tracking in free space optical communication[J]. Journal of Optoelectronics·Laser, 2010, 21(3): 366-370 [42] NAKAGAWA K, YAMAMOTO A, TOYODA M. Performance test result of LUCE (Laser utilizing communications equipment) engineering model[C]//Proceedings of the Free-Space Laser Communication Technologies XII. San Jose: SPIE, 2000 [43] ARIMOTO Y, TOYOSHIMA M, TOYODA M, et al. Preliminary Result on Laser Communication Experiment Using (ETS-VI)[C]//Proceedings of the Proceedings-SPIE the International Society for Optical Engineering. San Jose: SPIE International Society for Optical, 1995 [44] TOLKER-NIELSEN T, OPPENHAUSER G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[C]//Proceedings of the Free-Space Laser Communication Technologies XIV. San Jose: SPIE, 2002 [45] JONO T, TOYODA M, NAKAGAWA K, et al. Acquisition, tracking, and pointing systems of OICETS for free space laser communications[C]//Proceedings of the Acquisition, Tracking, and Pointing XIII. Orlando: SPIE, 1999 [46] SMUTNY B, LANGE R, KÄMPFNER H, et al. In-Orbit verification of optical inter-satellite communication links based on homodyne BPSK[C]//Proceedings of the Free-Space Laser Communication Technologies XX. San Jose: SPIE, 2008 [47] ANTONELLO R, BRANZ F, SANSONE F, et al. High-precision dual-stage pointing mechanism for miniature satellite laser communication terminals[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 776-785 doi: 10.1109/TIE.2020.2972452 [48] 陈刚, 董作人, 耿健新, 等. 155/622 Mb/s多发射器激光通信系统[J]. 中国激光, 2004, 31(5): 583-587 doi: 10.3321/j.issn:0258-7025.2004.05.018CHEN Gang, DONG Zuoren, GENG Jianxin, et al. 155/622 Mb/s multiple transmitter laser communication systems[J]. Chinese Journal of Lasers, 2004, 31(5): 583-587 doi: 10.3321/j.issn:0258-7025.2004.05.018 [49] 佟首峰, 姜会林, 刘云清, 等. 自由空间激光通信系统APT粗跟踪伺服带宽优化设计[J]. 光电工程, 2007, 34(9): 16-20TONG Shoufeng, JIANG Huilin, LIU Yunqing, et al. Optimum design of bandwidth for the APT coarse tracking assembly in free space laser communication[J]. Opto-Electronic Engineering, 2007, 34(9): 16-20 [50] 孟立新, 赵丁选, 张立中, 等. 机载激光通信稳瞄吊舱设计与跟踪精度测试[J]. 兵工学报, 2015, 36(10): 1916-1923 doi: 10.3969/j.issn.1000-1093.2015.10.013MENG Lixin, ZHAO Dingxuan, ZHANG Lizhong, et al. The test of tracking accuracy and design of airborne laser communication stabilized pod[J]. Acta Armamentarii, 2015, 36(10): 1916-1923 doi: 10.3969/j.issn.1000-1093.2015.10.013 [51] 张元生, 仇振安, 郭帅, 等. 机载激光通信系统关键技术分析与试验验证[J]. 电光与控制, 2017, 24(10): 80-84 doi: 10.3969/j.issn.1671-637X.2017.10.012ZHANG Yuansheng, QIU Zhen’an, GUO Shuai, et al. Key technology analysis of airborne laser communication system and its verification[J]. Electronics Optics :Times New Roman;">& Control, 2017, 24(10): 80-84 doi: 10.3969/j.issn.1671-637X.2017.10.012 [52] 胡一博, 孟立新, 白杨杨, 等. 空间激光通信粗跟踪等效复合控制技术[J]. 激光与光电子学进展, 2023, 60(9): 0906004HU Yibo, MENG Lixin, BAI Yangyang, et al. Coarse tracking equivalent compound control technology for space laser communication[J]. Laser :Times New Roman;">& Optoelectronics Progress, 2023, 60(9): 0906004 [53] JIMÉNEZ J. Laser diode reliability: crystal defects and degradation modes[J]. Comptes Rendus Physique, 2003, 4(6): 663-673 doi: 10.1016/S1631-0705(03)00097-5 [54] HORTELANO V, ANAYA J, SOUTO J, et al. Defect signatures in degraded high power laser diodes[J]. Microelectronics Reliability, 2013, 53(9/10/11): 1501-1505 [55] SHI B, PINNA S, ZHAO H W, et al. Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon[J]. Physica Status Solidi (A), 2021, 218(3): 2000374 [56] ORTON J W. Reliability and degradation of semiconductor lasers and LEDs[J]. Journal of Modern Optics, 1992, 39(8): 1799-1800 [57] FUKUDA M. Historical overview and future of optoelectronics reliability for optical fiber communication systems[J]. Microelectronics Reliability, 2000, 40(1): 27-35 [58] HENDOW S, FALVEY S, NELSON B, et al. Overview of qualification protocol of fiber lasers for space applications[C]//Proceedings of the Solid State Lasers XV: Technology and Devices. San Jose: SPIE, 2006 [59] YABLON A D. Optics of Fusion Splicing[M]. Berlin: Springer, 2005 [60] BEAUVOIS G, CAUSSANEL M, LUPI J F, et al. Projet DROÏD: développement d'un dosimètre distribué à fibre optique[C]//Proceedings of the FMR2016: 7eme Journees sur les Fibres Optiques en Milieu Radiatif. 2016 [61] CHEYMOL G, LONG H, VILLARD J F, et al. High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 2252-2258 [62] GRISCOM D L. Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: application to color centers in silica-based optical fibers[J]. Physical Review B, 2001, 64(17): 174201 [63] REMY L, CHEYMOL G, GUSAROV A, et al. Compaction in optical fibres and fibre bragg gratings under nuclear reactor high neutron and gamma fluence[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2317-2322 doi: 10.1109/TNS.2016.2570948 [64] KAZAURA K, OMAE K, SUZUKI T, et al. Enhancing performance of next generation FSO communication systems using soft computing based predictions[J]. Optics Express, 2006, 14(12): 4958-4968 doi: 10.1364/OE.14.004958 [65] WANG Y K, XU H Y, LI D Y, et al. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence[J]. Scientific Reports, 2018, 8(1): 1124 doi: 10.1038/s41598-018-19559-9 [66] JAHID A, ALSHARIF M H, HALL T J. A contemporary survey on free space optical communication: potentials, technical challenges, recent advances and research direction[J]. Journal of Network and Computer Applications, 2022, 200: 103311 doi: 10.1016/j.jnca.2021.103311 [67] LI H W, HUANG Y M, WANG Q, et al. Performance analysis of satellite-to-ground coherent optical communication system with aperture averaging[J]. Applied Sciences, 2018, 8(12): 2496 doi: 10.3390/app8122496 [68] GEISLER D J, YARNALL T M, STEVENS M L, et al. Multi-aperture digital coherent combining for free-space optical communication receivers[J]. Optics Express, 2016, 24(12): 12661-12671 doi: 10.1364/OE.24.012661 [69] SUN J, HUANG P M, YAO Z S, et al. Adaptive digital combining for coherent free space optical communications with spatial diversity reception[J]. Optics Communications, 2019, 444: 32-38 [70] WAINRIGHT E, REFAI H H, SLUSS JR J J. Wavelength diversity in free-space optics to alleviate fog effects[C]//Proceedings of the Free-Space Laser Communication Technologies XVII. San Jose: SPIE, 2005 [71] HAMPSON K M, TURCOTTE R, MILLER D T, et al. Adaptive optics for high-resolution imaging[J]. Nature Reviews Methods Primers, 2021, 1(1): 68 doi: 10.1038/s43586-021-00066-7 [72] FÉTICK R J L, MUGNIER L M, FUSCO T, et al. Blind deconvolution in astronomy with adaptive optics: the parametric marginal approach[J]. Monthly Notices of the Royal Astronomical Society, 2020, 496(4): 4209-4220 [73] JIANG L, DAI Z S, YU X, et al. Experimental demonstration of a single-mode fiber coupling over a 1 km urban path with adaptive optics[J]. Journal of Russian Laser Research, 2021, 42(3): 363-370 [74] JIAN H, KE D, CHAO L, et al. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication[J]. Optics Express, 2014, 22(13): 16000-16007 doi: 10.1364/OE.22.016000 [75] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185 [76] WANG J. Twisted optical communications using orbital angular momentum[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(3): 34201 [77] WANG J, LIU J, LI S H, et al. Orbital angular momentum and beyond in free-space optical communications[J]. Nanophotonics, 2022, 11(4): 645-680 [78] REN Y X, XIE G D, HUANG H, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 2014, 39(10): 2845-2848 [79] HUANG H, CAO Y W, XIE G D, et al. Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization[J]. Optics Letters, 2014, 39(15): 4360-4363 doi: 10.1364/OL.39.004360 [80] RUCHI, SENTHILKUMARAN R P, PAL S K. Phase singularities to polarization singularities[J]. International Journal of Optics, 2020, 2020(1): 2812803 [81] SHEN Y, ROSALES-GUZMÁN C. Nonseparable states of light: from quantum to classical[J]. Laser :Times New Roman;">& Photonics Reviews, 2022, 16(7): 2100533 [82] 张建强, 翟焱望, 付时尧, 等. 径向偏振矢量光束在大气湍流下的传输分析[J]. 光学学报, 2020, 40(11): 1101001 doi: 10.3788/AOS202040.1101001ZHANG Jianqiang, ZHAI Yanwang, FU Shiyao, et al. Propagation properties of radially-polarized vector beams under a turbulent atmosphere[J]. Acta Optica Sinica, 2020, 40(11): 1101001 doi: 10.3788/AOS202040.1101001 [83] ZHU Z Y, JANASIK M, FYFFE A, et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams[J]. Nature Communications, 2021, 12(1): 1666 doi: 10.1038/s41467-021-21793-1 [84] YU Y, XU M F, PU M B, et al. Demonstration of 120 Gbit/s turbulence-resilient coherent optical communication employing cylindrical vector beam multiplexing[J]. Optics Express, 2023, 31(25): 42165-42175 doi: 10.1364/OE.506613 [85] ZHANG Z, LIANG X L, GOUTSOULAS M, et al. Robust propagation of pin-like optical beam through atmospheric turbulence[J]. APL Photonics, 2019, 4(7): 076103 doi: 10.1063/1.5095996 [86] HU N Z, ZHOU H B, ZHANG R Z, et al. Experimental demonstration of a “Pin-Like” low-divergence beam in a 1-Gbit/s OOK FSO link using a limited-size receiver aperture at various propagation distances[J]. Optics Letters, 2022, 47(16): 4215-4218 doi: 10.1364/OL.467681 [87] XU Y, LAN B, LIU C, et al. Self-focusing pin-like optical vortex beams resist atmospheric turbulence propagation for the space optical communication[C]//Proceedings of the 3rd International Conference on Laser, Optics, and Optoelectronic Technology (LOPET 2023). Kunming: SPIE, 2023 -
-
赵云 男, 1996年2月出生于吉林省通化市, 现为长光卫星技术股份有限公司光学工程师, 主要研究方向为波前探测、折衍光学系统设计等. E-mail:
陈茂胜 男, 1985年9月出生于江苏省盐城市, 现为长光卫星技术股份有限公司研究员, 主要研究方向为光学遥感卫星总体设计等. E-mail:
下载: