留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电卡制冷技术研究现状与空间应用展望

常启泰 黄玉龙 孟相朋 王定远 白宜松 陈雪

常启泰, 黄玉龙, 孟相朋, 王定远, 白宜松, 陈雪. 电卡制冷技术研究现状与空间应用展望[J]. 空间科学学报, 2025, 45(2): 437-448. doi: 10.11728/cjss2025.02.2025-0005
引用本文: 常启泰, 黄玉龙, 孟相朋, 王定远, 白宜松, 陈雪. 电卡制冷技术研究现状与空间应用展望[J]. 空间科学学报, 2025, 45(2): 437-448. doi: 10.11728/cjss2025.02.2025-0005
CHANG Qitai, HUANG Yulong, MENG Xiangpeng, WANG Dingyuan, BAI Yisong, CHEN Xue. Research Progress of Electrocaloric Cooling Technology and Prospect for Space Applications (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 437-448 doi: 10.11728/cjss2025.02.2025-0005
Citation: CHANG Qitai, HUANG Yulong, MENG Xiangpeng, WANG Dingyuan, BAI Yisong, CHEN Xue. Research Progress of Electrocaloric Cooling Technology and Prospect for Space Applications (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 437-448 doi: 10.11728/cjss2025.02.2025-0005

电卡制冷技术研究现状与空间应用展望

doi: 10.11728/cjss2025.02.2025-0005 cstr: 32142.14.cjss.2025-0005
基金项目: 国家自然科学基金项目(12162011), 第七届中国科协青年人才托举工程项目(2021QNRC001)和山东省重点研发计划项目(2022CXGC020203)共同资助
详细信息
    作者简介:
    • 常启泰 男, 1999年3月出生于吉林省榆树市, 现为桂林电子科技大学机械工程专业在读研究生, 主要研究方向为电卡制冷实验研究. E-mail: 2992884521@qq.com
    通讯作者:
    • 陈雪 女, 1988年10月出生于广西壮族自治区桂林市, 现为桂林电子科技大学机电工程学院教授, 博士生导师, 主要研究方向为微重力流体物理、多相流界面效应与传热传质研究等. E-mail: chenxue@guet.edu.cn
  • 中图分类号: TB61+1

Research Progress of Electrocaloric Cooling Technology and Prospect for Space Applications

  • 摘要: 电卡制冷技术是一种新型的固态制冷技术, 利用电卡材料在加电和去电过程的熵变实现制冷循环, 具有高能效、轻量化、无制冷剂泄漏特点, 在航天冷藏箱、空间可穿戴设备等领域具有巨大的应用前景. 目前, 空间热电制冷技术存在电耗大、制冷系数低等问题, 限制了该技术未来在航天工程中的应用. 本文从电卡材料性能、电卡冷热分离方法及电卡制冷器件三方面进行回顾和分析, 介绍了电卡组分、形态、制备工艺、可靠性和稳定性方面的研究进展, 总结了电卡制冷原理以及主动式和被动式的冷热分离方法, 归纳了往复单级和往复多级电卡器件的工作原理. 最后, 展望了电卡制冷技术未来在空间科学领域的发展方向.

     

  • 图  1  电卡材料形态

    Figure  1.  Form of electric card material

    图  2  电卡材料可靠性和稳定性. (a) 300万次循环后机械性能, (b) 100万次循环后制冷特性

    Figure  2.  Reliability and stability of electrocaloric materials. (a) Mechanical properties after 3 million cycles, (b) cooling characteristics after 1 million cycles

    图  3  电卡制冷原理

    Figure  3.  Schematic diagram of electrocaloric refrigeration

    图  4  主动式冷热分离方法. (a)分离原理, (b)分离器件

    Figure  4.  Active cold and hot separation method. (a) Schematic diagram of separation, (b) separation device

    图  5  被动式冷热分离方法. (a)分离原理, (b)分离器件

    Figure  5.  Passive cold and hot separation method. (a) Schematic diagram separation, (b) separation device

    图  6  往复单级制冷器件. (a)自驱动柔性制冷器件, (b)点阵式制冷器件, (c)柔性可穿戴制冷器件

    Figure  6.  Reciprocating unipolar refrigeration device. (a) Self-actuating flexible refrigeration device, (b) arrayrefrigeration electronic card device, (c) flexible wearable refrigeration device

    图  7  往复多级无回热制冷器件. (a)自驱动热泵式器件, (b)静电驱动多级联器件, (c)基于流体换热的电卡制冷管, (d)分段式柔性电卡制冷管

    Figure  7.  Reciprocating cascade non-regenerative refrigeration device. (a) Self-actuating heat pump device, (b) electrostatic-driven cascade devices, (c) microfluidic-based heat exchange tube, (d) multi-stage flexible tube

    图  8  往复多级回热制冷器件. (a)高分子材料主动回热制冷器件, (b) PST多层电容制冷器件, (c) PMN-100xPT制冷器件, (d) PST多层平板式制冷器件, (e) PMN-8 PT制冷器件, (f)双回路主动回热制冷器件

    Figure  8.  Reciprocating cascade regenerative refrigeration device. (a) Polymer material active regenerative refrigeration device, (b) PST-based multi-layer device, (c) PMN-100xPT device, (d) PST-based cascade flat device, (e) PMN-8 PT-based device, (f) double-circuit active regenerative device

    表  1  不同组分电卡材料的组成、形态、测试条件及其性能参数

    Table  1.   Composition, configuration, testing conditions, and property parameters of different types of electrocaloric materials

    材料 形态 测试
    温度T/K
    温变
    ΔT/K
    电场强度E/
    (kV·cm–1)
    电热强度(ΔT/
    ΔE)/(K·cm·kV–1)
    熵变ΔS/
    (J·kg–1·K–1)
    无机
    材料
    PMN-30 PT[10] 块体 418 2.6 90 0.289
    (Pb0.97La0.02)(Zr0.80Sn0.14Ti0.06)O3[15] 块体 323 –14.1 110 0.128 –13.5
    Pb 0.8 Ba0.2ZrO3[11] 薄膜 290 45 598 0.075 46.9
    PbZr0.95Ti0.05O3[17] 薄膜 495 12 480 0.025 8
    Ba(Zr0.20Ti0.80)O3−Ba(Sn0.11 Ti0.89)O3[16] 厚膜 298 5.2 330 0.016 6.9
    BaZr0.2Ti0.8O3[25] 厚膜 –7 195 0.036 –17.16
    PbSc0.5Ta0.5O3[18] MLC 330 –6.1 290 0.021 –53
    有机
    材料
    P(VDF-TrFE) 68%/32%[12] 厚膜 306 20 160 0.125 95
    P(VDF-TrFE-CFE)
    59.2%/33.6%/7.2%[26]
    厚膜 303 14.8 150 0.987 95
    复合
    材料
    P(VDF-TrFE-CFE)/PBZ 97%/3%[14] 薄膜 243 13.99 150 0.093 52.7
    P(VDF-TrFE-CFE)/PMN-PT[27] 薄膜 303 31 180 0.171
    下载: 导出CSV
  • [1] HU H H, JU Y W, YU J C, et al. Highly stabilized and efficient thermoelectric copper selenide[J]. Nature Materials, 2024, 23(4): 527-534
    [2] LI P, QIU P F, XU Q, et al. Colossal Nernst power factor in topological semimetal NbSb2[J]. Nature Communications, 2022, 13(1): 7612
    [3] ZHANG S, DELIYORE-RAMÍREZ J, DENG S, et al. Highly reversible extrinsic electrocaloric effects over a wide temperature range in epitaxially strained SrTiO3 films[J]. Nature Materials, 2024, 23(5): 639-647
    [4] QIAN S X, CATALINI D, MUEHLBAUER J, et al. High-performance multimode elastocaloric cooling system[J]. Science, 2023, 380(6646): 722-727
    [5] 新黄河. 七次上太空的航天冰箱,为何只有海尔能造[EB/OL]. [2022-04-16]. https://www.toutiao.com/article/7087208257655210530/?wid=1747802224560
    [6] LI C Y, CAI Y C, XIE Y F, et al. Enhanced dielectric/ferroelectric properties of P(VDF-TrFE) composite films with organic perovskite ferroelectrics[J]. Applied Physics Express, 2023, 16(3): 031008
    [7] WANG D, CHEN X, YUAN G L, et al. Toward artificial intelligent self-cooling electronic skins: large electrocaloric effect in all-inorganic flexible thin films at room temperature[J]. Journal of Materiomics, 2019, 5(1): 66-72
    [8] 白洋, 李建厅, 秦士强, 等. 面向高效固态制冷应用的铁电陶瓷材料[J]. 现代技术陶瓷, 2018, 39(6): 369-389

    BAI Yang, LI Jianting, QIN Shiqiang, et al. Ferroelectric ceramics for high-efficient solid-state refrigeration[J]. Advanced Ceramics, 2018, 39(6): 369-389
    [9] SUN H C, MENG Y Z, HAN F F, et al. Simultaneously achieved large electrocaloric effect and broad working temperature range in transparent Sm-doped 0.88Pb(Mg1/3Nb2/3)O3-0.12PbTiO3 ceramics at low electric field[J]. Ceramics International, 2024, 50(11): 19237-19244
    [10] ROŽIČ B, KOSEC M, URŠIČ H, et al. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics[J]. Journal of Applied Physics, 2011, 110(6): 064118
    [11] PENG B L, FAN H Q, ZHANG Q. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature[J]. Advanced Functional Materials, 2013, 23(23): 2987-2992
    [12] LU S G, ROŽIČ B, ZHANG Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect[J]. Applied Physics Letters, 2010, 97(16): 162904
    [13] 李子超, 施骏业, 陈江平, 等. 电卡制冷材料与系统发展现状与展望[J]. 制冷学报, 2021, 42(1): 1-13

    LI Zichao, SHI Junye, CHEN Jiangping, et al. Electrocaloric cooling materials and systems: a review and perspective[J]. Journal of Refrigeration, 2021, 42(1): 1-13
    [14] QIAN G M, ZHU K J, LI X, et al. The electrocaloric effect of PBZ/PVDF flexible composite film near room temperature[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 12001-12016
    [15] ZHUO F P, LI Q, GAO J H, et al. Giant negative electrocaloric effect in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectrics near room temperature[J]. ACS Applied Materials :Times New Roman;">& Interfaces, 2018, 10(14): 11747-11755
    [16] LI J L, CHANG Y F, YANG S, et al. Lead-free bilayer thick films with giant electrocaloric effect near room temperature[J]. ACS Applied Materials :Times New Roman;">& Interfaces, 2019, 11(26): 23346-23352
    [17] MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science, 2006, 311(5765): 1270-1271
    [18] NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range[J]. Nature, 2019, 575(7783): 468-472
    [19] ZHENG S Y, DU F H, ZHENG L R, et al. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer[J]. Science, 2023, 382(6674): 1020-1026
    [20] HUANG Y F, GU T, RUI G C, et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity[J]. Energy :Times New Roman;">& Environmental Science, 2021, 14(11): 6021-6029
    [21] SADL M, PRAH U, KOVACOVA V, et al. Multifunctional flexible ferroelectric thick-film structures with energy storage, piezoelectric and electrocaloric performance[J]. Journal of Materials Chemistry C, 2023, 11(29): 10058-10068 doi: 10.1039/D3TC01555F
    [22] LI X Y, YANG J L, PAN X H, et al. New soft actuating way by rapidly temperature change of electrocaloric effect[J]. ACS Applied Materials :Times New Roman;">& Interfaces, 2023, 15(24): 29449-29456
    [23] LU S J, CHEN G R, ZHANG Y C, et al. Electrocaloric effect in lead-free 0.5Ba(Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3) TiO3 ceramic measured by direct and indirect methods[J]. Ceramics International, 2018, 44(17): 21950-21955
    [24] QIAN X S, HAN D L, ZHENG L R, et al. High-entropy polymer produces a giant electrocaloric effect at low fields[J]. Nature, 2021, 600(7890): 664-669
    [25] YE H J, QIAN X S, JEONG D Y, et al. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film[J]. Applied Physics Letters, 2014, 105(15): 152908
    [26] LI X Y, QIAN X S, LU S G, et al. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer[J]. Applied Physics Letters, 2011, 99(5): 052907
    [27] LI Q, ZHANG G Z, ZHANG X S, et al. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy[J]. Advanced Materials, 2015, 27(13): 2236-2241
    [28] 赵建福, 王双峰, 刘强, 等. 中国微重力科学研究回顾与展望[J]. 空间科学学报, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034

    ZHAO Jianfu, WANG Shuangfeng, LIU Qiang, et al. Retrospect and perspective on microgravity science in China[J]. Chinese Journal of Space Science, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034
    [29] MENG Y, PU J H, PEI Q B. Electrocaloric cooling over high device temperature span[J]. Joule, 2021, 5(4): 780-793 doi: 10.1016/j.joule.2020.12.018
    [30] SINYAVSKY Y V, PASHKOV N D, GOROVOY Y M, et al. The optical ferroelectric ceramic as working body for electrocaloric refrigeration[J]. Ferroelectrics, 1989, 90(1): 213-217
    [31] PLAZNIK U, KITANOVSKI A, ROŽIČ B, et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device[J]. Applied Physics Letters, 2015, 106(4): 043903
    [32] JIA Y B, JU Y S. A solid-state refrigerator based on the electrocaloric effect[J]. Applied Physics Letters, 2012, 100(24): 242901
    [33] LI M D, SHEN X Q, CHEN X, et al. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration[J]. Nature Communications, 2022, 13(1): 5849
    [34] HAN D L, ZHANG Y J, HUANG C L, et al. Self-oscillating polymeric refrigerator with high energy efficiency[J]. Nature, 2024, 629(8014): 1041-1046
    [35] MA R J, ZHANG Z Y, TONG K, et al. Highly efficient electrocaloric cooling with electrostatic actuation[J]. Science, 2017, 357(6356): 1130-1134
    [36] BAI P J, ZHANG Q, CUI H, et al. An active pixel-matrix electrocaloric device for targeted and differential thermal management[J]. Advanced Materials, 2023, 35(15): 2209181
    [37] WANG Z Y, BO Y W, BAI P J, et al. Self-sustaining personal all-day thermoregulatory clothing using only sunlight[J]. Science, 2023, 382(6676): 1291-1296
    [38] WU H X, ZHU Y, YAN W Z, et al. A self-regenerative heat pump based on a dual-functional relaxor ferroelectric polymer[J]. Science, 2024, 386(6721): 546-551
    [39] MENG Y, ZHANG Z Y, WU H X, et al. A cascade electrocaloric cooling device for large temperature lift[J]. Nature Energy, 2020, 5(12): 996-1002
    [40] CUI H, ZHANG Q, BO Y W, et al. Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density[J]. Joule, 2022, 6(1): 258-268
    [41] BAI P J, CUI H, ZHANG D, et al. A highly efficient cascade electrocaloric cooling tube with enhanced temperature change by sawtooth voltage[J]. Next Materials, 2023, 1(1): 100001
    [42] GU H M, QIAN X S, LI X Y, et al. A chip scale electrocaloric effect based cooling device[J]. Applied Physics Letters, 2013, 102(12): 122904 doi: 10.1063/1.4799283
    [43] WANG Y D, ZHANG Z Y, USUI T, et al. A high-performance solid-state electrocaloric cooling system[J]. Science, 2020, 370(6512): 129-133
    [44] PLAZNIK U, VRABELJ M, KUTNJAK Z, et al. Numerical modelling and experimental validation of a regenerative electrocaloric cooler[J]. International Journal of Refrigeration, 2019, 98: 139-149
    [45] TORELLÓ A, LHERITIER P, USUI T, et al. Giant temperature span in electrocaloric regenerator[J]. Science, 2020, 370(6512): 125-129 doi: 10.1126/science.abb8045
    [46] BLUMENTHAL P, RAATZ A. Design methodology for electrocaloric cooling systems[J]. Energy Technology, 2018, 6(8): 1560-1566 doi: 10.1002/ente.201800139
    [47] LI J N, TORELLÓ A, KOVACOVA V, et al. High cooling performance in a double-loop electrocaloric heat pump[J]. Science, 2023, 382(6672): 801-805
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  55
  • PDF下载量:  25
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-01-06
  • 录用日期:  2025-03-31
  • 修回日期:  2025-02-26
  • 网络出版日期:  2025-04-18

目录

    /

    返回文章
    返回