留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced Ion Sampling Techniques for In-situ Neutral Gas and Low-energy Ions Exploration of Main-belt Comet

WANG Xinyue ZHANG Aibing SU Bin DAN Du KONG Linggao TIAN Zheng ZHENG Xiangzhi

WANG Xinyue, ZHANG Aibing, SU Bin, DAN Du, KONG Linggao, TIAN Zheng, ZHENG Xiangzhi. Enhanced Ion Sampling Techniques for In-situ Neutral Gas and Low-energy Ions Exploration of Main-belt Comet. Chinese Journal of Space Science, 2025, 45(3): 749-760 doi: 10.11728/cjss2025.03.2024-0124
Citation: WANG Xinyue, ZHANG Aibing, SU Bin, DAN Du, KONG Linggao, TIAN Zheng, ZHENG Xiangzhi. Enhanced Ion Sampling Techniques for In-situ Neutral Gas and Low-energy Ions Exploration of Main-belt Comet. Chinese Journal of Space Science, 2025, 45(3): 749-760 doi: 10.11728/cjss2025.03.2024-0124

Enhanced Ion Sampling Techniques for In-situ Neutral Gas and Low-energy Ions Exploration of Main-belt Comet

doi: 10.11728/cjss2025.03.2024-0124 cstr: 32142.14.cjss.2024-0124
Funds: Supported by the National Natural Science Foundation of China (42474239, 41204128), China National Space Administration (Pre-research project on Civil Aerospace Technologies No. D010301), and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA17010303)
More Information
    Author Bio:

    1977, Ph.D., associate researcher. She works at the Beijing Key Laboratory of Space Environment Exploration, National Space Science Center, Chinese Academy of Sciences, with research interests in lunar and planetary space environment exploration technologies, planetary atmospheric and space plasma science. E-mail: orchard@nssc.ac.cn

  • Figure  1.  Configuration of GIA

    Figure  2.  Effect of the half-high ratio of the electron beam to the ionization region on the electric potentials generated by the spatial charge of the electrons

    Figure  3.  Effects of the solar panels to the ions moving towards the GIA observation entrance without a solar panel (a) and with a solar panel (b). The voltage of the attract grid is set to –10 V, and the white curves are the contours of the voltage, and the dark blue curves are the path of the particles

    Figure  4.  Effects of the voltage variations of the attraction grid on the total ions arriving at the GIA observation entrance. (a) Effect of the attraction grid voltage set to –25 V on the ions at the GIA observation inlet. The white curves are the contours of the voltage, and the dark blue curves are the path of the particles, (b) the percentage of total ions arrived at the entrance observed by GIA when the grid voltage varies from –10 V to –50 V

    Figure  5.  Electrons distribution in the ionization region. (a) Average kinetic energy of electrons in the ionization region, with the abscissa indicating the electron serial number and the ordinate indicating the electron kinetic energy, (b) electron distribution along the direction of the vertical electron beam at the center of the ionization region. The ordinate represents the normalized value of the total number of electrons, and the abscissa represents the position

    Figure  6.  Electric field distribution and ion multiplication in the ionization region. (a) Profiles of the variation voltage-position in the central region above the ion outlet of the ionization region, aligned to the direction of electron movement. The blue curve represents the voltage variations with position in the absence of electron emission from the cathode. The black curve represents the voltage variations when electron emission from the cathode reaches 50 μA, (b) the variation in the quantity of ions ionized by electrons over the time in ionization region

    Figure  7.  Preliminary testing experiment result of GIA

    Table  1.   Measurement requirements of GIA

    Item Range or value
    Mass range 1 ~ 150 Da
    Mass sesolution ≤ 1 Da
    Dynamic range ≥109
    Time resolution 4~256 s
    下载: 导出CSV
  • [1] HSIEH H H, JEWITT D. A population of comets in the main asteroid belt[J]. Science, 2006, 312(5773): 561-563 doi: 10.1126/science.1125150
    [2] JEWITT D. The active asteroids[J]. The Astronomical Journal, 2012, 143(3): 66 doi: 10.1088/0004-6256/143/3/66
    [3] ALTWEGG K, BALSIGER H, BAR-NUN A, et al. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio[J]. Science, 2015, 347(6220): 1261952 doi: 10.1126/science.1261952
    [4] HSIEH H H, JEWITT D, LACERDA P, et al. The Return of Activity in Main-Belt Comet 133P/Elst-Pizarro[J]. Monthly Notices of the Royal Astronomical Society, 2010, 403(1): 363-377 doi: 10.1111/j.1365-2966.2009.16120.x
    [5] JEWITT D, AGARWAL J, WEAVER H, et al. Episodic ejection from active asteroid 311P/PANSTARRS[J]. The Astrophysical Journal, 2015, 798(2): 109 doi: 10.1088/0004-637X/798/2/109
    [6] SHI J C, MA Y H, LIANG H, et al. Research of activity of Main Belt Comets 176P/LINEAR, 238P/Read and 288P/(300163) 2006 VW139[J]. Scientific Reports, 2019, 9(1): 5492 doi: 10.1038/s41598-019-41880-0
    [7] JEWITT D, WEAVER H, MUTCHLER M, et al. The nucleus of active asteroid 311P/(2013 P5) PANSTARRS[J]. The Astronomical Journal, 2018, 155(6): 231 doi: 10.3847/1538-3881/aabdee
    [8] SCHAEFER L, FEGLEY JR B. Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites[J]. Icarus, 2007, 186(2): 462-483 doi: 10.1016/j.icarus.2006.09.002
    [9] SNODGRASS C, AGARWAL J, COMBI M, et al. The Main Belt Comets and ice in the Solar System[J]. The Astronomy and Astrophysics Review, 2017, 25: 5 doi: 10.1007/s00159-017-0104-7
    [10] ALTWEGG K, EHRENFREUND P, GEISS J, et al. Composition and origin of cometary materials[C]//Proceedings of an ISSI Workshop. Dordrecht: Springer, 1999
    [11] WILLIAMSON H N, NILSSON H, STENBERG WIESER G, et al. Momentum and pressure balance of a comet ionosphere[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088666 doi: 10.1029/2020GL088666
    [12] BERGMAN S. Low-Energy Ions Around Comet 67P/Churyumov-Gerasimenko[D]. Umeå: Umeå University, 2021
    [13] WILEY W C, MCLAREN I H. Time‐of‐flight mass spectrometer with improved resolution[J]. The Review of Scientific Instruments, 1955, 26(12): 1150-1157 doi: 10.1063/1.1715212
    [14] WANG X Y, ZHANG A B, ZHANG X G, et al. Bursts of energetic electron induced large surface charging observed by Chang’E-1[J]. Planetary and Space Science, 2012, 71(1): 1-8 doi: 10.1016/j.pss.2012.06.009
    [15] WANG Xinyue, ZHANG Aibing, JING Tao, et al. Synchronization of energetic electron bursting and lunar orbiter surface charging to negative kilovolts[J]. Chinese Journal of Geophysics, 2016, 59(10): 3533-3542 doi: 10.6038/cjg20161001
    [16] MCCOMAS D J, BARRACLOUGH B L, FUNSTEN H O, et al. Solar wind observations over Ulysses’ first full polar orbit[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A5): 10419-10433 doi: 10.1029/1999JA000383
    [17] NEUGEBAUER M. Spacecraft observations of the interaction of active comets with the solar wind[J]. Reviews of Geophysics, 1990, 28(2): 231-252 doi: 10.1029/RG028i002p00231
    [18] GULKIS S, ALLEN M, VON ALLMEN P, et al. Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko[J]. Science, 2015, 347(6220): 391
    [19] KONG L G, ZHANG A B, TIAN Z, et al. Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): design and ground calibration[J]. Earth and Planetary Physics, 2020, 4(4): 333-344
    [20] ABPLANALP D, WURZ P, HUBER L, et al. An optimised compact electron impact ion storage source for a time-of-flight mass spectrometer[J]. International Journal of Mass Spectrometry, 2010, 294(1): 33-39 doi: 10.1016/j.ijms.2010.05.001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  27
  • PDF下载量:  12
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-10-07
  • 修回日期:  2025-03-19
  • 网络出版日期:  2025-03-19

目录

    /

    返回文章
    返回