留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肌骨系统多刚体动力学建模在载人航天领域的研究进展

张静 周毕云 聂嘉辰 董先鹏 丁立

张静, 周毕云, 聂嘉辰, 董先鹏, 丁立. 肌骨系统多刚体动力学建模在载人航天领域的研究进展[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0163
引用本文: 张静, 周毕云, 聂嘉辰, 董先鹏, 丁立. 肌骨系统多刚体动力学建模在载人航天领域的研究进展[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0163
ZHANG Jing, ZHOU Biyun, NIE Jiachen, DONG Xianpeng, DING Li. Advances in the Study of the Musculoskeletal Multi-rigid-body Dynamic Modeling in Manned Space Flight (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 776-787 doi: 10.11728/cjss2025.03.2024-0163
Citation: ZHANG Jing, ZHOU Biyun, NIE Jiachen, DONG Xianpeng, DING Li. Advances in the Study of the Musculoskeletal Multi-rigid-body Dynamic Modeling in Manned Space Flight (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 776-787 doi: 10.11728/cjss2025.03.2024-0163

肌骨系统多刚体动力学建模在载人航天领域的研究进展

doi: 10.11728/cjss2025.03.2024-0163 cstr: 32142.14.cjss.2024-0163
详细信息
    作者简介:
    • 张静 女, 1990年10月出生于山东省聊城市, 现为北京航空航天大学生物与医学工程学院博士研究生, 主要研究方向为航空航天人因工程、运动生物力学等. E-mail: zhangjing2021@buaa.edu.cn
    通讯作者:
    • 丁立 男, 1971年3月出生于云南省昭通市, 现为北京航空航天大学生物与医学工程学院教授, 博士生导师, 主要研究方向为人因工程、航空航天生理学及防护等. E-mail: ding1971316@buaa.edu.cn
  • 中图分类号: V7

Advances in the Study of the Musculoskeletal Multi-rigid-body Dynamic Modeling in Manned Space Flight

  • 摘要: 随着中国载人航天事业由近地空间向深空探测推进, 长期空间飞行中航天员肌骨系统损伤防护和地外星球探测中低重力环境适应, 成为航天员健康和安全保障的关切问题. 为解决地面模拟微重力/低重力环境人体运动肌骨系统响应等方面的局限, 基于生物力学原理和计算机辅助设计的肌骨系统建模仿真技术逐渐成为评估航天员锻炼方案和分析微重力/低重力运动特征的新型方法和工具. 本文基于多刚体动力学建模和仿真方法, 综合分析了载人航天领域肌骨系统动力学建模仿真方法的基本原理、可信度评估与研究进展, 并在此基础上讨论了其在航天员锻炼、舱外航天服优化及地外星球任务执行等方面的应用现状, 进而提出未来发展前景与研究方向.

     

  • 图  1  空间环境肌骨系统多刚体动力学建模和仿真流程

    Figure  1.  Flowchart of multi-rigid-body dynamic modeling and simulation for the musculoskeletal system in the space environment

    图  2  肌骨系统建模仿真用于载人航天的可信度评估

    Figure  2.  Credibility evaluation of musculoskeletal modeling and simulation for manned space flight

  • [1] LEE P H U, CHUNG M, REN Z P, et al. Factors mediating spaceflight-induced skeletal muscle atrophy[J]. American Journal of Physiology Cell Physiology, 2022, 322(3): C567-C580. doi: 10.1152/ajpcell.00203.2021
    [2] KELLER T S, STRAUSS A M, SZPALSKI M. Prevention of bone loss and muscle atrophy during manned space flight[J]. Microgravity Quarterly: MGQ, 1992, 2(2): 89-102
    [3] DAI Z Q, LEI X H, YANG C, et al. Systematic biomedical research of the NASA Twins Study facilitates the hazard risk assessment of long-term spaceflight missions[J]. Protein :Times New Roman;">& Cell, 2019, 10(9): 628-630. doi: 10.1007/s13238-019-0628-x
    [4] TANAKA K, NISHIMURA N, KAWAI Y. Adaptation to microgravity, deconditioning, and countermeasures[J]. The Journal of Physiological Sciences: JPS, 2017, 67(2): 271-281. doi: 10.1007/s12576-016-0514-8
    [5] HARGENS A R, BHATTACHARYA R, SCHNEIDER S M. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight[J]. European Journal of Applied Physiology, 2013, 113(9): 2183-2192. doi: 10.1007/s00421-012-2523-5
    [6] NASA. Lunar surface operations modeling using digital astronaut simulation - nasa technical reports server (NTRS)[EB/OL]. (2021-03-30)[2024-11-08]. https://ntrs.nasa.gov/citations/20210011091
    [7] QAISAR R, KARIM A, ELMOSELHI A B. Muscle unloading: A comparison between spaceflight and ground-based models[J]. Acta Physiologica (Oxford, England), 2020, 228(3): e13431. doi: 10.1111/apha.13431
    [8] SINATRA M, QUARANTA M. Biomechanical model and machine learning algorithms comparison for customized training biofeedback on ISS[EB/OL]. (2021-04-28)[2024-10-07]. https://www.politesi.polimi.it/handle/10589/173951
    [9] PORTER A P. Design of soft knee exoskeleton and modeling effects of variable stiffness for advanced space suits and planetary exploration[D/OL]. Massachusetts Institute of Technology, (2020)[2024-10-08]. https://dspace.mit.edu/handle/1721.1/129135
    [10] LEWANDOWSKI B E, PENNLINE J A, STALKER A R, et al. Musculoskeletal modeling component of the NASA digital astronaut project[Z/OL]. (2011-04-11)[2024-10-06]. https://ntrs.nasa.gov/citations/20110011357
    [11] GALLO C A, THOMPSON W K, LEWANDOWSKI B E, et al. Computational modeling using OpenSim to simulate a squat exercise motion[Z/OL]. (2015-01-13)[2024-10-06]. https://ntrs.nasa.gov/citations/20150002700
    [12] 陈善广, 姜国华, 王春慧. 航天人因工程研究进展[J]. 载人航天, 2015(2): 11 doi: 10.3969/j.issn.1674-5825.2015.02.001

    CHEN Shanguang, JIANG Guohua, WANG Chunhui. Advancement in Space Human Factors Engineering[J]. Manned Spaceflight, 2015(2): 11 doi: 10.3969/j.issn.1674-5825.2015.02.001
    [13] LETIER P, FAU G, MITTAG U, et al. SOLEUS: ankle foot orthosis for space countermeasure with immersive virtual reality[C]//Proceedings of the 2nd International Symposium on Wearable Robotics. Segovia: Springer, 2016: 305-309
    [14] GUO N, FAN X Y, WU Y T, et al. Effect of constraint loading on the lower limb muscle forces in weightless treadmill exercise[J]. Journal of Healthcare Engineering, 2018, 2018: 8487308. doi: 10.1155/2018/8487308
    [15] LI H, JIN Y, WANG C H. Modeling and simulation of astronaut motions during extravehicular activity: a complex system based method[J]. AASRI Procedia, 2012, 3: 118-126. doi: 10.1016/j.aasri.2012.11.021
    [16] SRIDHAR S, STETZ E, MCFARLAND S M, et al. Space suit and portable life support system center of gravity influence on astronaut kinematics, exertion and efficiency[C]// 47th International Conference on Environmental Systems, 2017
    [17] DIAZ A, NEWMAN D. Musculoskeletal human-spacesuit interaction model[C]//2014 IEEE Aerospace Conference. Big Sky: IEEE, 2014: 1-13
    [18] LI J W, YE Q, DING L, et al. Modeling and dynamic simulation of astronaut’s upper limb motions considering counter torques generated by the space suit[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20(9): 929-940. doi: 10.1080/10255842.2017.1310850
    [19] DAMSGAARD M, RASMUSSEN J, CHRISTENSEN S T, et al. Analysis of musculoskeletal systems in the anybody modeling system[J]. Simulation Modelling Practice and Theory, 2006, 14(8): 1100-1111. doi: 10.1016/j.simpat.2006.09.001
    [20] DELP S L, ANDERSON F C, ARNOLD A S, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement[J]. IEEE Transactions on Bio-medical Engineering, 2007, 54(11): 1940-1950. doi: 10.1109/TBME.2007.901024
    [21] ANDERSEN M S, RASMUSSEN J. Chapter 7 - AnyBody modeling system[M]//PAUL G, HAMDY DOWEIDAR M. Digital Human Modeling and Medicine. London: Academic Press, 2023: 143-159
    [22] RASMUSSEN J. Chapter 8 - The AnyBody modeling system[M]//SCATAGLINI S, PAUL G. DHM and Posturography. London: Academic Press, 2019: 85-96
    [23] LI H, WANG C, WANG Z, et al. Analysis of the applicability of the anybody modeling system in microgravity environment[C]//Proceedings of the 64th International Astronautical Congress. Beijing: IAC, 2013, 1: 98-103
    [24] JESSUP L N, KELLY L A, CRESSWELL A G, et al. Validation of a musculoskeletal model for simulating muscle mechanics and energetics during diverse human hopping tasks[J]. Royal Society Open Science, 2023, 10(10): 230393. doi: 10.1098/rsos.230393
    [25] Standard for models and simulations[EB/OL]. [2024-11-12]. https://standards.nasa.gov/standard/nasa/nasa-std-7009
    [26] NASA handbook for models and simulations: an implementation guide for NASA-STD-7009[EB/OL]. [2024-11-12]. https://standards.nasa.gov/standard/nasa/nasa-hdbk-7009
    [27] GALLO C A, PERKINS R A, IVANOFF, A E, et al. Modeling and simulation credibility assessments of musculoskeletal computational models for simulating astronaut injuries due to a poor spacesuit fit - NASA Technical Reports Server (NTRS)[EB/OL]. [2024-11-13]. https://ntrs.nasa.gov/citations/20240011014
    [28] CURRELI C, DI PUCCIO F, DAVICO G, et al. Using musculoskeletal models to estimate in vivo total knee replacement kinematics and loads: effect of differences between models[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 703508. doi: 10.3389/fbioe.2021.703508
    [29] LINDENROTH L, CAPLAN N, DEBUSE D, et al. A novel approach to activate deep spinal muscles in space—Results of a biomechanical model[J]. Acta Astronautica, 2015, 116: 202-210. doi: 10.1016/j.actaastro.2015.07.012
    [30] HAJJ-BOUTROS G, SONJAK V, FAUST A, et al. Impact of 14 days of bed rest in older adults and an exercise countermeasure on body composition, muscle strength, and cardiovascular function: Canadian space agency standard measures[J]. Gerontology, 2023, 69(11): 1284-1294. doi: 10.1159/000534063
    [31] FREGLY B J, FREGLY C D, KIM B T. Computational prediction of muscle moments during ared squat exercise on the international space station[J]. Journal of Biomechanical Engineering, 2015, 137(12): 121005. doi: 10.1115/1.4031795
    [32] JAGODNIK K M, THOMPSON W K, GALLO C A, et al. Biomechanical modeling of the deadlift exercise on the HULK device to improve the efficacy of resistive exercise microgravity countermeasures[Z/OL]. (2016-02-08)[2024-11-14]. https://ntrs.nasa.gov/citations/20170000665
    [33] 任启超. 正常重力环境下人体下肢力学特性研究[D]. 太原: 太原理工大学, 2017

    REN Qichao. Study on Mechanical Properties of Human Lower Limbs Under Normal Gravity[D]. Taiyuan: Taiyuan University of Technology, 2017
    [34] HUMPHREYS B T, THOMPSON W K, LEWANDOWSKI B E, et al. Development of a high fidelity dynamic module of the advanced resistive exercise device (ARED) using adams[Z/OL]. (2012-02-14)[2024-11-14]. https://ntrs.nasa.gov/citations/20150010126
    [35] 邹宇鹏. 多模式柔索驱动航天员训练机器人控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2014

    ZOU Yupeng. Research on Control of Multimodal Cable Driven Astronaut Training Robot[D]. Harbin: Harbin Engineering University, 2014
    [36] BÄRLIGEA A, HASE K, YOSHIDA M. Simulation of human movement in zero gravity[J]. Sensors, 2024, 24(6): 1770. doi: 10.3390/s24061770
    [37] WU B, GAO X, QIN B, et al. Effect of microgravity on mechanical loadings in lumbar spine at various postures: a numerical study[J]. NPJ microgravity, 2023, 9(1): 16. doi: 10.1038/s41526-023-00253-8
    [38] LEWANDOWSKI B E, PENNLINE J A, THOMPSON W K, et al. Development of the NASA digital astronaut project muscle model[Z/OL]. (2015-01-13)[2024-11-14]. https://ntrs.nasa.gov/citations/20150004110
    [39] SCHAFFNER G, NEWMAN D J, ROBINSON S K. Computational simulation of extravehicular activity dynamics during a satellite capture attempt[J]. Journal of Guidance, Control, and Dynamics: A Publication of the American Institute of Aeronautics and Astronautics Devoted to the Technology of Dynamics and Control, 2000, 23(2): 367-369. doi: 10.2514/2.4533
    [40] SCHMIDT P B. An investigation of space suit mobility with applications to EVA operations[D/OL]. Massachusetts Institute of Technology, 2001[2024-11-14]. https://dspace.mit.edu/handle/1721.1/8105
    [41] 王晓东, 王政, 李昊, 等. 面向出舱活动的典型功能操作肌肉激活预测[J]. 载人航天, 2015, 21(5): 510-515 doi: 10.3969/j.issn.1674-5825.2015.05.014

    WANG Xiaodong, WANG Zheng, LI Hao, et al. Predicting muscle activation in typical functional tasks of EVA[J]. Manned Spaceflight, 2015, 21(5): 510-515 doi: 10.3969/j.issn.1674-5825.2015.05.014
    [42] 何剑. 航天服上肢关节人服耦合特性研究[D]. 湘潭: 湘潭大学, 2020

    HE Jian. Research on Human-Suit Coupling Characteristics Based on Upper Limb of Spacesuit[D]. Xiangtan: Xiangtan University, 2020
    [43] BURKHART K A, ANDERSON D E, STIRLING L. Estimating compressive spinal loads due to planetary space suits[C]// 2020 International Conference on Environmental Systems, 2020
    [44] 李希源, 张建军, 艾存金, 等. 重物质心自适应调节背负外骨骼负重性能分析[J]. 振动工程学报, 2024, 37(8): 1299-1307

    LI Xiyuan, ZHANG Jianjun, AI Cunjin, et al. Load-bearing performance analysis of backpack exoskeleton with adaptive adjustment of the weight-gravity center[J]. Journal of Vibration Engineering, 2024, 37(8): 1299-1307
    [45] LOSTROSCIO K H, QUIOCHO L J, HUFFMAN K, et al. Lunar surface operations modeling using digital astronaut simulation[Z/OL]. (2021-03-30)[2024-11-14]. https://ntrs.nasa.gov/citations/20210011091
    [46] ZHANG J, ZHOU R, LI J, et al. Optimization for lunar mission training scheme based on anybody software[M]//DUFFY V G. Digital Human Modeling and Applications in Health, Safety, Ergonomics, and Risk Management. Human Body Modeling and Ergonomics. Berlin, Heidelberg: Springer, 2013: 169-178. DOI: 10.1007/978-3-642-39182-8_20
    [47] 乔兵, 陈卓鹏. 航天员低重力步行训练被动外骨骼机器人模拟[J]. 宇航学报, 2014, 35(4): 474-480

    QIAO Bing, CHEN Zhuopeng. A passive exoskeleton robotic simulator for reduced-gravity locomotion training of astronaut[J]. Journal of Astronautics, 2014, 35(4): 474-480
    [48] KUMAR K, SHAH M, LI Y, et al. Electrically-actuated jumping exoskeleton for lunar locomotion[C]// 2024 Regional Student Conferences. 2024: 84209. https://doi.org/10.2514/6.2024-84209
    [49] KLUIS L, KELLER N, BAI H, et al. Reducing metabolic cost during planetary ambulation using robotic actuation[J]. Aerospace Medicine and Human Performance, 2021, 92(7): 570-578. doi: 10.3357/AMHP.5754.2021
    [50] 周泽世, 朱钧, 朱云超, 等. 下肢外骨骼人机耦合交互力特性分析[J]. 医用生物力学, 2022, 37(2): 305-311

    Zhou Zeshi, ZHU Jun, ZHU Yunchao, et al. Characteristic analysis on human-machine interaction force of lower limb exoskeleton[J]. Journal of Medical Biomechanics, 2022, 37(2): 305-311
    [51] 乔俊淋, 郑德维, 胡梓惟, 等. 助力外骨骼机器人结构设计与运动学建模分析[J]. 机械设计, 2024, 41(1): 21-27

    QIAO Junlin, ZHENG Dewei, Hu Ziwei, et al. Structural design and kinematics modeling analysis of power-assisted exoskeleton robot[J]. Journal of Machine Design, 2024, 41(1): 21-27
  • 加载中
图(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  34
  • PDF下载量:  9
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-11-15
  • 修回日期:  2025-04-29
  • 网络出版日期:  2025-04-29

目录

    /

    返回文章
    返回