留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向电磁频谱监测卫星的双层混合规划求解方法

周晓光 义余江 孙正波

周晓光, 义余江, 孙正波. 一种面向电磁频谱监测卫星的双层混合规划求解方法[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2024-0097
引用本文: 周晓光, 义余江, 孙正波. 一种面向电磁频谱监测卫星的双层混合规划求解方法[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2024-0097
ZHOU Xiaoguang, YI Yujiang, SUN Zhengbo. A Two-layer Hybrid Scheduling Approach for Electromagnetic Spectrum Monitoring Satellite Mission Planning (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-13 doi: 10.11728/cjss2025.04.2024-0097
Citation: ZHOU Xiaoguang, YI Yujiang, SUN Zhengbo. A Two-layer Hybrid Scheduling Approach for Electromagnetic Spectrum Monitoring Satellite Mission Planning (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-13 doi: 10.11728/cjss2025.04.2024-0097

一种面向电磁频谱监测卫星的双层混合规划求解方法

doi: 10.11728/cjss2025.04.2024-0097 cstr: 32142.14.cjss.2024-0097
详细信息
    作者简介:
    • 周晓光 男, 1981年出生于云南省昭通市, 博士, 现为西南电子电信技术研究所高级工程师, 主要研究方向为信号处理、卫星载荷应用管理、卫星地面系统设计.E-mail: xguang.zhou@foxmail.com
    • 孙正波 男, 1975年出生于山东省青岛市, 博士, 现为西南电子电信技术研究所正高级工程师、重点实验室主任、博士生导师, 主要研究方向为卫星系统设计应用、信号处理与定位技术.E-mail: szb_57@sina.com
  • 中图分类号: V44,V474

A Two-layer Hybrid Scheduling Approach for Electromagnetic Spectrum Monitoring Satellite Mission Planning

  • 摘要: 近年来, 卫星呈规模化发展且迅速壮大, 对地探测需求随之增长, 面向电磁频谱监测卫星(Electromagnetic Spectrum Monitoring Satellite, ESMS)任务的精细化管控要求越来越高. 卫星任务规划时不考虑动态调整将导致大量时间资源浪费, 因此对任务进行动态调整并分配合适的卫星资源是有效执行监测任务的重要保证. 本文首先构建考虑任务动态调整的任务规划模型, 然后面向任务可调整性设计一种双层混合规划方法(Two-layer Hybrid Scheduling Approach, TH-SA). 该方法第一层采用遗传算法处理不可动态调整的任务序列, 第二层基于启发式规则对可动态调整的任务进行规划. 基于规则的初始化策略和多样化的交叉模式可保证遗传算法的探索和开发效率, 而启发式算法(Heuristic Algorithm, HA)则通过任务调整和资源分配实现可动态调整任务的优化调度. 通过对任务分类处理, 在保证不可动态调整任务完成率的同时, 提升算法对可动态调整任务的规划效率. 仿真实验验证了算法在不同规模任务规划中能保持较高的收益, 有效提升电磁频谱监测卫星资源的应用效益.

     

  • 图  1  算法流程

    Figure  1.  Flowchart of the TH-SA

    图  2  种群初始化. (a) 按照开始时间排序, (b)按照任务持续时间排序

    Figure  2.  Initialization of population. (a) Sort by start time, (b) sort by task duration

    图  3  交叉策略

    Figure  3.  Strategies of crossover

    图  4  任务排序策略

    Figure  4.  Strategies of task sorting

    图  5  TH-SA, TH-SA-A,TH-SA-B收益的实验结果对比

    Figure  5.  Total profit comparison of TH-SA, TH-SA-A, TH-SA-B algorithms for different task sets

    图  6  ALNS, GA, TH-SA收益的实验结果对比

    Figure  6.  Total profit comparisonof TH-SA, TH-SA-A, TH-SA-B algorithms for different task sets

    图  7  算法TH-SA, GA, ALNS利润率的实验结果对比

    Figure  7.  Profit rate comparisonof TH-SA, GA, ALNS algorithms for different task sets

    图  8  算法TH-SA, GA, ALNS收益的实验结果对比

    Figure  8.  Total profit comparison of TH-SA, GA, ALNS algorithms for different task sets

    表  1  卫星轨道参数

    Table  1.   Satellite orbital parameters

    参数名称 数值
    a/km 1150
    e 0.00016
    i 100.082
    Ω/(º) 0
    ω/(º) 21.25
    М/(º) 149.94
    下载: 导出CSV

    表  2  GA, ALNS, HA, TH-SA算法不同规模任务集的实验结果对比

    Table  2.   Comparison of GA, ALNS, HA and TH-SA algorithms for different task scale

    任务集 TH-SA GA ALNS HA
    fmax fmean Std.Dev fmax fmean Std.Dev fmax fmean Std.Dev
    100 829 829.0 0 823 820.1 1.552 823 818.9 2.591 790
    200 1693 1687.8 2.8537 1617 1605.9 5.789 1611 1602.9 5.162 1513
    300 2307 2295.9 5.3133 2095 2073.7 11.63 2088 2069 9.915 1869
    400 3167 3161.4 2.6193 3105 3082.7 8.391 3094 3080.3 8.651 2906
    500 4071 4056.6 5.7151 3917 3891.9 13.213 3914 3892.9 11.596 3651
    600 4621 4589.7 10.626 4235 4199.8 20.551 4217 4182.9 13.673 3758
    700 5289 5273.7 9.795 4703 4649.3 21.93 4687 4644.4 24.408 4133
    800 5765 5717.9 17.969 4702 4585.8 30.647 4659 4583 26.989 3815
    1000 8169 8146.9 9.2912 7876 7806.1 25.16 7839 7804.2 20.745 7431
    1100 8717 8697.3 9.3548 8318 8282.8 18.655 8323 8277.8 23.564 7970
    1200 9589 9566.7 9.7921 9021 8978.7 22.778 8997 8973.4 15.776 8468
    1300 10357 10322.0 16.92 9318 9256.3 30.679 9334 9254.5 29.066 8439
    1400 10687 10640.0 21.715 9365 9253.6 39.265 9322 9252.6 37.973 8456
    下载: 导出CSV

    表  3  不同任务规模下算法运行时间(单位: s)

    Table  3.   Mean CPU service time for different task scales (Unit: s)

    任务集 TH-SA GA ALNS
    100 0.1786 0.1715 0.2314
    200 0.2907 0.3447 0.4039
    300 0.4648 0.4979 0.5386
    400 0.7495 0.7929 0.8682
    500 0.8572 1.0234 1.0881
    600 1.0799 1.3051 1.3983
    700 1.2866 1.614 1.7194
    800 1.5199 1.8827 1.9788
    1000 2.0191 2.8366 2.9503
    1100 2.2655 3.2001 3.2477
    1200 2.5913 3.5522 3.6606
    1300 2.8031 3.8833 3.9863
    1400 3.1638 4.6034 4.9579
    下载: 导出CSV
  • [1] 邱涤珊, 王慧林, 祝江汉, 等. 面向区域普查的电子侦察卫星任务调度[J]. 小型微型计算机系统, 2011, 32(2): 379-384

    QIU Dishan, WANG Huilin, ZHU Jianghan, et al. Area census-oriented electronic reconnaissance satellites scheduling technique[J]. Journal of Chinese Computer Systems, 2011, 32(2): 379-384
    [2] 李耀东, 张静, 江建军. 多区域多维覆盖联合优化卫星任务规划[J]. 太赫兹科学与电子信息学报, 2019, 17(1): 40-45 doi: 10.11805/TKYDA201901.0040

    LI Yaodong, ZHANG Jing, JIANG Jianjun. Mission scheduling of electronic reconnaissance satellites based on multi-area[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(1): 40-45 doi: 10.11805/TKYDA201901.0040
    [3] 杜永浩, 邢立宁, 姚锋, 等. 航天器任务调度模型、算法与通用求解技术综述[J]. 自动化学报, 2021, 47(12): 2715-2741

    DU Yonghao, XING Lining, YAO Feng, et al. Survey on models, algorithms and general techniques for spacecraft mission scheduling[J]. Acta Automatica Sinica, 2021, 47(12): 2715-2741
    [4] 李长春, 祝江汉. 面向移动目标连续侦察的电子侦察卫星任务规划方法研究[J]. 装备指挥技术学院学报, 2011, 22(1): 67-72

    LI Changchun, ZHU Jianghan. Research on the method of electronic reconnaissance satellites mission planning for continuous reconnaissance of moving target[J]. Journal of the Academy of Equipment Command :Times New Roman;">& Technology, 2011, 22(1): 67-72
    [5] SONG Y J, WEI L N, YANG Q, et al. RL-GA: a reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem[J]. Swarm and Evolutionary Computation, 2023, 77: 101236 doi: 10.1016/j.swevo.2023.101236
    [6] TSENG L Y, CHEN S C. Two-phase genetic local search algorithm for the multimode resource-constrained project scheduling problem[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 848-857 doi: 10.1109/TEVC.2008.2011991
    [7] 刘士新, 宋健海, 唐加福. 蚁群最优化——模型、算法及应用综述[J]. 系统工程学报, 2004, 19(5): 496-502 doi: 10.3969/j.issn.1000-5781.2004.05.010

    LIU Shixin, SONG Jianhai, TANG Jiafu. Ant colony optimization review: modelling, algorithms and applications[J]. Journal of Systems Engineering, 2004, 19(5): 496-502 doi: 10.3969/j.issn.1000-5781.2004.05.010
    [8] JIANG X M, SONG Y J, XING L N. Dual-population artificial bee colony algorithm for joint observation satellite mission planning problem[J]. IEEE Access, 2022, 10: 28911-28921. doi: 10.1109/ACCESS.2022.3157286
    [9] CHEN H K, TIAN Y, PEDRYCZ W, et al. Hyperplane assisted evolutionary algorithm for many-objective optimization problems[J]. IEEE Transactions on Cybernetics, 2020, 50(7): 3367-3380 doi: 10.1109/TCYB.2019.2899225
    [10] 李夏苗, 陈新江, 伍国华, 等. 考虑断点续传的中继卫星调度模型及启发式算法[J]. 航空学报, 2019, 40(11): 269-284

    LI Xiamiao, CHEN Xinjiang, WU Guohua, el al. Scheduling model and heuristic algorithm for tracking and data relay satellite considering breakpoint transmission[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 269-284
    [11] CHEN X J, LI X M, WANG X W, et al. Task scheduling method for data relay satellite network considering breakpoint transmission[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 844-857 doi: 10.1109/TVT.2020.3046304
    [12] HE Y M, WU G H, CHEN Y W, et al. A two-stage framework and reinforcement learning-based optimization algorithms for complex scheduling problems[OL]. arXiv preprint arXiv: 2103.05847, 2021
    [13] 李阳阳, 罗俊仁, 张万鹏, 等. 多星协同观测遗传-演进双层任务规划算法[J]. 系统工程与电子技术, 2024, 46(6): 2044-2053

    LI Yangyang, LUO Junren, ZHANG Wanpeng, et al. Genetic-evolutionary bi-level mission planning algorithm for multi-satellite cooperative observation[J]. Systems Engineering and Electronics, 2024, 46(6): 2044-2053
    [14] 刘润滋, 马天赐, 吴伟华, 等. 基于分层强化学习的中继卫星网络任务动态调度方法[J]. 通信学报, 2023, 44(7): 207-217 doi: 10.11959/j.issn.1000-436x.2023130

    LIU Runzi, MA Tianci, WU Weihua, et al. Dynamic task scheduling method for relay satellite networks based on hierarchical reinforcement learning[J]. Journal on Communications, 2023, 44(7): 207-217 doi: 10.11959/j.issn.1000-436x.2023130
    [15] WANG Y, LIU D S, LIU J T. A bilevel programming model for multi-satellite cooperative observation mission planning[J]. IEEE Access, 2024, 12: 145439-145449. doi: 10.1109/ACCESS.2024.3465633
    [16] MICHALEWICZ Z, SCHOENAUER M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation, 1996, 4(1): 1-32 doi: 10.1162/evco.1996.4.1.1
    [17] CÁMARA M, ORTEGA J, DE TORO F. A single front genetic algorithm for parallel multi-objective optimization in dynamic environments[J]. Neurocomputing, 2009, 72(16/17/18): 3570-3579
    [18] MUKHOPADHYAY A, MAULIK U, BANDYOPADHYAY S. Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 991-1005 doi: 10.1109/TEVC.2009.2012163
    [19] BARBULESCU L, WATSON J P, WHITLEY L D, et al. Scheduling space-ground communications for the air force satellite control network[J]. Journal of Scheduling, 2004, 7(1): 7-34 doi: 10.1023/B:JOSH.0000013053.32600.3c
    [20] KIM K, JEONG I J. Flow shop scheduling with no-wait flexible lot streaming using an adaptive genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2009, 44(11/12): 1181-1190
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  33
  • PDF下载量:  4
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-07-30
  • 录用日期:  2025-07-10
  • 修回日期:  2025-01-04
  • 网络出版日期:  2025-01-10

目录

    /

    返回文章
    返回